
Data Migration Project Management and Standard
Software – Experiences in Avaloq Implementation Projects

Klaus Haller

COMIT AG
Pflanzschulstr. 7
CH-8004 Zürich

klaus.haller@comit.ch

Abstract: When a bank implements a new core banking platform, it must
simultaneously migrate its data from the old platform into the new one. We identified
three main dimensions for data migration. They make up the corners in our conceptual
data migration project management framework: the data migration triangle. The first
dimension demands scripts as deliverables, which actually transform and migrate the
data. The second, and too often neglected, dimension is the delivery of data. It requires
that the scripts run together reliably and on time in a complex environment with many
dependencies. Dimension three addresses quality assurance. We describe methods for
checking whether all necessary data is migrated and whether the data is migrated
correctly. In contrast to previous work, we focus on technical issues from a project
manager’s perspective. We explain what data migration project managers have to
manage and why.

1. Motivation
For some years, a wave has flooded the banking IT landscape in Switzerland. Many
banks have replaced their old banking applications with new standard software. They
modernized their application landscape and reduced the total number of applications and
interfaces. Thereby, the banks cut costs and eased out-sourcing. Avaloq [Ava] and
Finnova [Fin] are the two dominant players on the Swiss market [Gab07, Min07]. But
implementing one of the two is only the first challenge; the second is the data
migration1. During this transition, the banks’ CIOs and customers share the same fears:
The new standard software platform replaced the old platform; the old one is shut down.
But later, customers notice that the migrated data is incomplete or corrupt. For example,
customers’ balances might be incorrect or account statements are mailed to customers
who have asked the bank not to mail their statements.

1 To prevent confusion: Data migration means migrating only data out of one schema to a new schema which
can be structured completely differently. This is the case when a new application (e.g. Avaloq or Finnova)
replaces an old one. Aim of database migration project is to change the database version or vendor, e.g. from
Oracle 10g to Oracle 11g. Schema, triggers, date etc. should remain unchanged, if it is possible, because
applications using the database should remain untouched.

Proceedings of the DW2008 Conference, St. Gallen, Switzerland, 2008
Lecture Notes in Informatics (LNI)
Copyright by Gesellschaft für Informatik e.V. (GI), Bonn

tzhhakl1
Approved

The key for a successful data migration project is a superior team and a convincing
methodology. The methodology in implementation projects is not monolithic but rather
like a puzzle. Pieces of the puzzle come from the bank, the implementation partner, the
project manager, and some can be chosen by the migration team. This paper offers a new
piece of the puzzle: a cohesive lense for data migration project managers to look on their
data migration projects, considering not only project organization and specification and
implementation, but also the complexity of “real life” IT environments.

Figure 1: Data Migration Methodology Levels

Figure 1 provides an overview about the different levels for methodologies relevant for
data migration projects. The top level, the project management level, addresses IT and
non-IT projects. A good example is the usage of the critical path method or tools like
Microsoft Project in companies as well as the return of investment the projects are
expected to generate. The second level from the top concentrates on IT specific project
management issues like the software development methods (e.g. RUP [Kru04] or
Extreme Programming [BA04]). One level down, we reach the management and
controlling level for data migration projects. Quite some work has been published in this
area. Morris [Mor06] provides an excellent introduction into data migration project
organization and project management (though he also addresses underlying
technological questions). Shorter articles like [BM04, Hud98] address some of the basic
problems and pit falls you might encounter in your first data migration project. The
butterfly approach [WLB97] contributes to this level with a high level phase model.
Bisbal et. al [BLW97] provide a general discussion of migrating legacy information
systems, i.e. the authors discuss more than the data migration aspect. Focusing more on
data migration for standard software, [Hal08] provides a more in-depth discussion of the
different phases. Also, this paper belongs to the “Data Migration Management &
Controlling” level. Based on our experience in different Avaloq implementation projects,
our paper describes the tasks of the lower levels with the aim of making their progress
measurable.

We name the next level down the “real life” IT view. It includes everything else besides
specification and implementation of the migration. Typical topics include integration
problems between the data migration sources and all information systems as well as
strategies for deploying data or the standard software on servers.

Data migration projects have specific tasks for which they use specific tools (e.g. ETL
tools). Furthermore, they rely on a specific architecture. Important previous works
contributing to this level include a description of SAP’s data migration tools [WG04], a
specific language [CG04], a data migration tool [DMS], or the architecture of the
butterfly approach [WLB97]. [Hal08] provides a detailed architecture which also comes
with suggestions for organizing the scripts. Finally, there is the “lab view” on data
migration. The level focuses completely on the narrow aspect of specifying the
migration and implementing the specification in PL/SQL scripts2.

We structure our discussion of the different dimensions of data migration projects by
focusing on a management view. Section 2 presents a big picture of the system
architecture with specific focus on components and dependencies. Section 3 gives a
quick overview on standard software implementation project organization. The data
migration triangle, the core illustration and explanation concept, is the subject of Section
4. The triangle provides a high level overview of the three core data migration project
dimensions. We elaborate the three dimensions in more detail in the following three
sections: Section 5 concentrates on the transformation from the old to the new database
schema (level “Lab View”). Section 6 discusses delivery issues, mainly integration and
dealing with large amounts of data (“Real Life” IT view). Quality assurance is the topic
of Section 7. It belongs conceptually to the data migration and controlling level, but an
implementation would belong to the “lab view.” It provides a risk model for the
technical implementation and how the risks can be tracked. We conclude our paper with
a short summary (Section 8).

2. System Architecture: Components and Dependencies

Standard software has three core components: a data model including domain value
tables, operational data, and workflows (Figure 2). The data model defines the object
types managed by the system. In contrast to software development projects, standard
software typically restricts changes of the data model. Avaloq, for example, provides the
object type “business partner.” It must be used for customers, counter parties, etc.
Avaloq does not allow adding a new object type “students.” However, the data model
gives the freedom to introduce a new attribute for “business partners” with values
“student,” “retired,” etc. to model this semantic.
“Student” and “retired” are typical examples for domain value tables. They define a set
of values an attribute can take. Another example for domain value tables are bank
specific names for account types like “Super Savings Account” or “Senior Residents
Checking Account”.

2 Throughout the paper, we use the term script. Certainly, it is possible to use ETL-tools instead of writing
scripts.

Data models offer a data- and IT-centric view of the standard software. Workflows
implementing business processes represent the business perspective. They specify how
users, customers, back office employees, and support staff use the software. Depending
on the philosophy of the standard software, workflows can be defined freely, partially, or
are completely unchangeable.
Rarely, banks buy standard software for completely new purposes. In most cases, they
have been successfully operating for many years. So the bank has already valuable and
important data. The old data must be migrated into the new system. The data will be
complemented by new operational data as soon as the new software is operational.
There are dependencies between the migration of old data, workflows, and the data
model. The data model is the foundation for the migration of old data and for the storage
and processing of new data (Figure 2). The data model also influences the workflows
(Figure 2). Workflows manipulate data and depend on data. If the data model does not
allow storing a picture of the customer’s passport, the execution of a workflow cannot
demand such a picture to be stored. Workflows can also put restrictions on data entered
by users (Figure 2) e.g. by only accepting customers whose nationality is known.
Depending on the standard software migration philosophy, old data is written directly
into database tables or it is migrated using the same workflows as for manual data entry.
In the latter case, there is a dependency between workflows and data migration (Figure 2

). Figure 2 contains two more components. First, there is an underlying basic
infrastructure with hardware, network, databases, and the actual standard software
kernel. They are easily overlooked, but our experience shows their major negative
impact on the overall project performance if not monitored and managed properly.
Furthermore, there is a deployment infrastructure for storing, loading, and copying
system snapshots, e.g. for distributing snapshots to different servers. A system snapshot
consists of the data model, data, and workflows. Also the standard software kernel or

Figure 2: System Architecture with Components and Dependencies

even the complete database might be included. The snapshots are used for rerunning a
migration from a certain point (e.g. with migrated customers to test the script for the
customers’ account script over and over again) or for analyzing problems on different
servers. It has not been our experience alone, but others have also observed that there is a
huge impact on the development cycle whether it takes ten minutes or ten hours to
reproduce a certain situation.

3. Project Organization

We present a simplified version of the project organization approach of COMIT’s Lean
Stream Implementation Method [LS07]. We distinguish four teams: a migration team, a
customization team, an infrastructure team, and a support team (Figure 3). The
migration team analyzes the data in the old system, specifies and implements the data
mapping for transforming the old data to fulfil the demands of the new system, e.g.
implemented in PL/SQL-scripts. Secondly, the migration team ensures the delivery.
Delivery means orchestrating script execution and manual data entries. It is a
challenging task because even small banks require hundreds of scripts for the migration.
The migration team uses specialized migration tools which they manage themselves. Our
experience shows that the highly specialized, in-depth knowledge of the migration team
is urgently needed, but only until the going live stage of the project. Consequently, our
project organization guarantees that the migration team can move to the next project to
start over again directly after going live.

The customization team is responsible for the workflow implementation and adoption
and the domain value tables. Team members usually have a sound knowledge of the
business processes and of the standard software in their particular area. The project
organization reflects this with a topic-oriented organization like accounting, CRM, etc.

Figure 3: Project Organization

in the workflow team. Object modelling, highly important for software development, is
a difficult topic in standard software implementation projects. The standard software
comes with a predefined object model usually only requiring and allowing minor
modifications. However, each data model change might require the migration team to
reimplement already developed transformations. Thus, the migration team is highly
interested in a stable and consistent object model. Consequently, it gets the responsibility
for the object model, but it must collect continuously the requirements from workflow
team members.

The infrastructure team configures and deploys the standard software, implements
interfaces with satellite systems like trading, risk, or anti-money-laundering systems, and
takes care of basic services such as hardware and network. If tasks like server or
database administration are outsourced, the infrastructure team manages the supplier
relationships.

The support team has two responsibilities. One is at least partially needed after the
migration, namely to coordinate the testing with test case definitions, etc. This is also
needed for later releases. Secondly, the support team is responsible for the initial user
training. Even small banks have hundreds of employees to be trained.

4. The Data Migration Triangle
Projects have one thing in common: there are typically more things to be done than staff
and time to do them. So it is important to set priorities. Setting priorities requires
knowing the tasks. We group all data migration tasks into three dimensions, which are
corners of our migration triangle (Figure 4). In this chapter, we give a brief overview,
whereas we elaborate each task in more details in the following chapters.
The first corner of the migration triangle represents the dimension called mapping.
Mapping means defining and implementing the transformation3 of business objects. A
business object is a meaningful object from a user’s perspective such as an account, a
customer, or a customer’s address. The transformation ensures that the data fits into the
target platform database schema. The dimension mapping has three tasks: the
identification of the business objects to be migrated (task business object identification),
the implementation of transformations for all business objects (task business object
completeness), and migrating all details of the different business objects (task attribute
mapping completeness).

3 We use the term transformation for ease of speech in this paper in an inclusive way, meaning that it also
comprises the extraction from the old and loading into the new system.

The second corner of the data migration triangle, delivery, includes correctly executing
the different transformations and coordinating them with manual data entries (if not all
of the data is migrated automatically). The delivery dimension consists of three tasks:
migration-migration-integration (MIG/MIG-integration), migration-customization-
integration (MIG/CUS-integration), and data set completeness. The task MIG/MIG-
integration ensures that the different mapping implementations of the migration team
run together. The task MIG/CUS-integration takes care that the workflows, domain
value tables, and the data migration fit together. The task data set completeness tests
carefully whether the migration runs in the estimated time for large data sets.

Quality assurance is the third dimension. Test cases must be defined and tested (task
test cases/testing) for ensuring a semantically correct migration result. The task
reconciliation guarantees that the migrated data is not only correct, but that also all
needed data is migrated. If testing or reconciliation detects failures, they have to be
solved earlier or later (task failure reduction).

The data migration triangle as a conceptual framework enables project managers to
express and illustrate priorities in data migration projects and how priorities change
during the project’s life-cycle. We illustrate this for the three typical situations we
identified in our projects: the initial phase, the development phase, and the pre-going live
phase. (Figure 5)

Because there are dependencies between business objects, the migration team migrates a
basic version of as many business objects as possible in the initial phase. Avaloq, for
example, allows migrating a bank account only if the customer has been migrated
before. Migrating an account balance is only possible if the account exists. Generally
speaking, business objects form chains or, more accurately directed, acyclic dependency
graphs. The “early” business objects must be migrated early in the project, even if they
are not completely correct, such that work on the post-ordered business objects can start.

During the development phase all business object types should be looked at in depth,
i.e. all attributes have to be considered, and the quality of the migration should be more
or less good enough for going live.

Figure 4: Data Migration Triangle: Dimensions and Tasks

A few weeks before going live, the pre-going live phase starts. The migration team
must work on ensuring that (nearly) 100% of the objects are migrated automatically. It is
especially important that the migration team monitors the data model, all domain value
tables, and every workflow change of the customization team to prevent the going live
migration from failing due to incompatibilities.

Figure 5: Data Migration Triangle and Extended Data Migration Radar View

The priorities for the different phases are reflected in the data migration triangle and an
extended radar view in Figure 5:

• To reach the goal of migrating as many business objects as possible, priority is
given to business object completeness and MIG/MIG integration during the initial
phase. Furthermore, test cases should be defined, though they cannot be tested
extensively.

• During the development phase, the different subtasks are equally important, if no
specific problems arise. The business objects’ identification should be nearly
completed and require only very limited affords.

• During the pre-going live phase, emphasis is given to a last round of failure
reduction, so that not too many manual migration or corrections are required.
Furthermore, the integration of the customization and the migration team is
important. Systems like Avaloq allow changes of the data model, domain data
tables, and migration relevant workflows till the last moment. So the migration team
has to run frequent tests of their migration routines to prevent last time changes
from causing major problems when going live under time pressure. Certainly,
additional test cases are important and must be considered, including retesting
previously failed ones.

5. The Mapping Task

The most obvious results of the migration team’s work are executable scripts for
extracting data from the old system, transforming it, and loading it into the new standard
software. In a first step, the migration team identifies what shall be migrated (task
business object identification). The team compiles a list with all business objects to be
migrated like the first column of the table in Figure 6. Compiling this list is far from
trivial. Theoretically, the migration team can start with an empty list and collect the
business objects by interviewing the workflow team, examining the GUI and the current
output, etc. However, there is a high risk of forgetting important business objects. We
prefer to start with a copy of a previous project and to adopt the copy to the specific
needs of the actual bank. The software vendor or experienced consulting companies
should provide such a list for their customers.

When the migration team has identified at least the most important business objects, the
specification of the transformation starts.4 Our experience shows that a simple mapping
sheet is sufficient (Figure 7). Starting points are the different windows of a GUI
prompting the different data items of a business object, which we assume to be the most
important information to be migrated. The migration team fills out a separate sheet (e.g.
in Excel). Each attribute in a window is a row on the sheet. A row stores the information
of the attribute’s name in the window and the table and attribute name in the standard
software. The table might be a table of a migration API or directly the internal table.
Furthermore, the table and attribute name of the old system is needed. The migration
type states whether the attribute is migrated normally (“migrate”) or whether the
information is derived automatically by the standard software (“derived” like the QI
information which depends on the nationality etc.). It is also possible that no migration is

Figure 6: Business Object List (left) and Migration State Statistic (right)

4 To our best knowledge, no well-established graphical specification techniques for data transformation exist
(like we know e.g. UML or ER diagrams for data models), though certainly for the technical implementation
much research in the context of schema mapping languages was done or is provided by existing ETL tools like
[Pow].

needed (“no migration”) or that due to the small amount of data, the data is manually
entered (“manual”). If data comes from more than one table of the old system, the join
condition between the different tables should be added. After the transformation is
specified, it is implemented using SQL, PL/SQL, or an ETL-tool. When a migration run
is finished, tests are performed and reconciliation tasks can start.

Figure 7: GUI View (left) and Specification Sheet (right)

From a project manager’s perspective, it is important to measure the progress of all three
tasks. Business object identification progress corresponds to the stability of the list of
the business objects (Figure 6, left). The key performance indicator is the number of
newly added business objects, e.g. per week or month. The lesser new business objects
are added, the more stable the list is, and the more likely it is already complete.

Business object completeness reflects how many of the identified business objects are
already migrated. Our experience shows that instead of a simple “done / to be done”
model, a more complex model is appropriate: “not started” (nobody has done anything),
“in work” (work has started but no result yet), “prototype” (first version successfully
migrated), “testing and refinement” (it works in principle but not every attribute has the
right value), “finished” (accepted by the customer). The progress is measured per
business object. The overall situation is summed up in a statistic (Figure 6, right) for
reporting purposes.

Attribute mapping completeness addresses whether all details of a business’ objects
are considered. For example, a customer can be modeled in the beginning only by her
name. So the business object exists which is helpful for business objects depending on
the existents of addresses. However, all attributes of the addresses must be migrated in
the end. Measuring the attribute mapping completeness is not really easy (and counting
attributes in the old and new system usually only adds bureaucratic overhead). However,
the already discussed statistics for business object completeness also contain this
information (Figure 6, right).

Figure 8: Indicators for Task Data Set Completeness

6. Migration Delivery
When the migration team members have specified and implemented scripts each for
themselves, the next two challenges are first, keeping the scripts compatible with the rest
of the environment and the other migration scripts, and second, ensuring they run in a
sensible time frame. We start our discussion with the latter challenge, the task of data
set completeness. The underlying problem consists of two contradicting demands. The
migration team needs short development cycles. If migrating the complete data of a bank
needs several days, the migrated data is restricted for testing purposes to a few
representative branches to reduce the migration time and thereby the development
cycles. Secondly and contrary, the final migration duration often has an upper limit,
because e.g. a bank cannot stop its operation for a week. So the migration team must
identify and optimize long running scripts by tests migrations with the complete data set.
Especially problematic are transformations with non-linear complexity. If migrating
1,000 customers needs one hour, migrating 10,000 customers might need 10 hours for a
complexity of O(n), but 100 hours for a complexity of O(n2). Also memory, network, or
disk problems might suddenly occur. Thus, it is mandatory to run regular tests. Valuable
indicators for the progress of this task are (i) frequency of uploads with the whole data
set, (ii) the needed time for completion for migrating all date with all scripts, and (iii) the
top-n scripts regarding execution time (Figure 8).

The second aspect, integration respectively integration tests, can be further structured
with respect to the involved teams. There is a customization/customization (CUS/CUS)-
integration for testing, e.g. whether the workflow for cashiers for a high withdrawal in a
foreign currency works properly with the involved forex dealer’s workflow. Frequently,
the customization team builds a customization build. It is a consistent set of workflows
and domain value tables of all customization team members. The customization build is
then rolled out to all customization development servers and the test and release
management cycle starts over again (Figure 9).

Of particular interest for us are integration issues involving the migration team. Similar
to the customization release management cycle, the migration team performs integration
tests by executing the scripts and thereby making a migration build
(migration/migration-integration or, short, MIG/MIG integration). So they
continuously check, for example, whether their scripts fit together with respect to
primary/foreign key relationships. The migration release is deployed on the migration
development servers. Usually, some migration development servers get an intermediate
state after some, but not all scripts have been executed. Developers working e.g. on the
migration of customer accounts want a server state where the customers are already
migrated, but the customer accounts scripts have not been executed. So they can test
improved versions of their scripts.

MIG/MIG-integration and CUS/CUS-integration are two separate release management
cycles. Additionally, there are interdependencies between the two cycles (“connected
cycles release management”, Figure 9), which we term migration/customization-
integration or MIG/CUS-integration. The migration team must regularly test whether
its scripts are still working properly with the newest customization build. For example, if
the customization team decides not to offer savings books any more, the migration team
cannot migrate saving books unchanged but must transform savings “books” into
savings “accounts.” Workflows which the customization team adopts are another source
of problems. For example, they may add a requirement that the passport-ID is stored for
each new customer. If the migration team uses the same workflow for migrating existing
customers, they cannot migrate customers for which they do have passport-IDs in the old
system. But also the migration can cause problems for the customization team. If the
migration team decides unilaterally to not migrate historic interest information, it is
impossible for the customization team to generate certain tax reports.

Figure 9: Connected Cycles Release Management

The dependencies require that the migration team knows the progress of the
customization team and vice versa. The connected cycles release management model
ensures exactly this. The customization team gets a “frozen” migration build from the
migration team and the migration team gets a “frozen” customization build. In detail this
means that the migration team works on a server with the standard software and a certain
customization build (workflows and domain value tables). From time to time, the
migration team runs integration tests by migrating the whole data or a subset. In case of
a successful migration, the migration server has a new migration build. The migration
build serves two purposes: first, it is deployed to the migration development servers as
discussed before. Second, the migration test server is deployed to the customization
development servers. If the workflows and domain value tables of the migration build
are not the newest ones of the customization, value tables and workflows are taken from
the last customization build.

Based on the new migration build, the customization team develops and adopts
workflows and domain value tables. Then, they run integration tests by installing all
workflow and domain value table changes on the customization integration server. This
creates a new customization build. This build is deployed not only to the customization
development servers. Also the migration team gets a copy as a base for their next
migration build, after the already migrated data has been removed. Finally, from time to
time, a copy of a migration or customization integration build is deployed to one (or
more) test servers, on which testers and end users test the workflows and check the
correctness of the migrated data.

7. Quality Assurance

Quality assurance is the third and last aspect of our data migration triangle. It subsumes
three tasks:

1. Migration test case identification and their execution for semantic verification
checks

2. Reconciliation for technical migration verification
3. Failure reduction, i.e. reengineering scripts which implement incorrect

transformations5
The tasks indicate differences and common aspects between the classical testing in
software development projects and the specific needs of data migration projects. This is
what our risk model specific for data migration projects in Figure 10 illustrates. It is
based on three assumptions. First, we assume that we do not have to deal with bugs in
the old software or the new standard application. Second, we assume that the data can be

5 From a technical perspective, developing new transformations or reengineering an old one is identical. From
a project management point of view it is different. The project manager, as explained in Section 4, might give
more emphasis in migrating as many business objects as possible in the initial phase instead of correcting
minor transformation failures.

migrated without prior cleansing.6 Finally, without loss of generality, the data of the old
and the new software store their data in one database. Then, we can group the data
migration specific risks as following:

• Semantic failures (Figure 10, no. 1, 2, and 3)
• Syntax errors (Figure 10, no. 4)
• Incompatibility failures (Figure 10, no. 5 and 6)

Semantic failures are conceptual problems during the extraction of data from the old
system, during its transformation, or during the process of loading into the new schema.
The extract step (1) must identify exactly the needed data of the old platform, which is
not always easy. In case a bank migrates its customers to a new system, customers might
not be of interest if they died five years ago. But if a customer caused serious problems
five years ago, such that the bank decided not to do business with this customer any
more, the customer must certainly be migrated and this information preserved. Secondly,
the transformation might be wrong (2). Simple failures include mixing up the given
name and the surname. A more complex failure would be to put all stocks of customers
with more than one custody account into their first one. The third kind of semantic
failures appears during the loading (3). This takes place when the migration-API of the
new platform refuses certain data or data is written to wrong tables.

Figure 10 Risk Model for Data Migration

6 If data cleansing is necessary, there are three options. It can be done in the old system prior to the migration.
The advantage is that well-trained staff is available and no technical problems due to incorrect data appear
during the migration. Data cleansing during the migration implies that the transformation solves the quality
problems. It requires that all data sources needed for the cleansing are available in the system (often, they are
scattered around in many Access or Excel files of different persons). However, the greatest risk is that users
and managers take the chance that someone is found for the data cleansing, and then they have more and more
cleansing and improvement wishes. Then, the migration team does not get along with its original work.
Finally, the data cleansing can be done after the migration, e.g. if the project is running out of time. It requires

A failure is a syntax error (4) if the execution of a script raises an error due to the script
not conforming to the language syntax like SQL. Finally, there are incompatibility
failures between two migration scripts (5) or between a migration script and the standard
software and its customization (6). Incompatibility failures reflect problems with
MIG/MIG-integration or MIG/CUS-integration. The target platform, respectively the
customization, assumes e.g. a key to be unique but the migration delivers non-unique
keys. Such failures might raise run-time exceptions or the standard software refuses the
data. However, if the standard software does not detect such problems immediately, they
might harm stability of the software later.

We require failure detection methods for each of the identified risks in Figure 10
together with KPIs as indicators for the change of the risk exposure over time (Table 1).
Problems in the extract step are best detected using a reconciliation mechanism.
Reconciliation means checking for each element on the source side whether it is
delivered to the target, e.g. whether all customers are migrated. Furthermore, important
attributes like nationality or aggregation functions like the sum of the balances of a
customer’s bank accounts. User tests help in an early phase for detecting if large
amounts of the data are missing (e.g. a certain branch or all savings accounts), but are of
no use to check whether three out of 100,000 customers got lost. The amount of data
items detected as missing (or not existing in the old system) in a certain time frame is a
suitable KPI.

Transformation failures are detected best by end user tests. A bank counselor could
check the portfolio of her most important customers to see whether the data in the new
system has been migrated correctly. Data items identified as correct can then be checked
automatically in regression tests for later migrations. A reconciliation mechanism is only
of limited help, because it does not check details, and it is written by members of the
migration team having less experience then users. KPIs are the number of errors during
an upload (complete and/or per script) and the quantity of affected data items. Problems
during the load are also detected by a reconciliation mechanism which might collect the
data rejected by the standard software. KPI is the number of unsuccessfully migrated
data items. Syntax errors should be counted by the person responsible for a test
migration. Incompatibility failures are more difficult. First, they have to be found if they
do not cause a rejection during the load step. So the test migration responsible, or team
members of any project team might notice such a failure. He has to report it together
with a severity classification.

the data quality to be in a good enough state such that it is accepted by the new system and that it does not
cause serious operational problems.

Data Migration Risk Detection Method KPI
1 Semantic failures

(Extract)
+ Reconciliation
o User Tests

Quantity of data set
change

2 Semantic failures
(Transformation)

+ User Tests
o Reconciliation

Identified errors and
amount of affected data
elements

3 Semantic failures
(Load)

+ Reconciliation

Not loaded items per
test migration

4 Syntax errors + Report of the test migration
responsible

Quantity of syntax
errors overall/per script

5 Incompatibility
MIG-MIG

+ Report of the test migration
responsible or migration team
members

Quantity and
classification of
severity

6 Incompatibility
MIG-CUS

+ Report of the test migration
responsible, migration team
members, or customization
team members

Quantity and
classification of
severity

Table 1: Failure Detection Methods and KPIs

8. Summary

When a bank replaces its core banking application platform with new (standard)
software, the data of the old platform must be migrated to the new one. Such data
migration projects have three dimensions, which are consolidated in our data migration
triangle. The data migration triangle expresses and illustrates priorities for the three
dimensions and their specific manifestations. In detail, the dimensions are:

• Mapping with the task’s business object identification, business object
completeness and attribute mapping completeness. This dimension addresses
that all business object types are migrated with all needed attributes.

• Delivery with the tasks MIG/MIG- and MIG/CUS-integration and data set
completeness. The dimension represents the fact that the migration scripts not
only have to run correctly for themselves, but fit together with each other and
the standard software customization. Furthermore, the scripts must be
executable within a sensible time frame.

• Quality assurance with the task of testing cases, reconciliation and failure
reduction. Based on a model for technical migration risks, the dimension cares
about tracking the actual risk exposure by looking how it changes over time.

With this focus on explaining the dimensions of data migration projects in companies’
complex IT environments, this paper complements perfectly other work on data
migration architectures like [WLB97, Hal08] by giving a management’s view on the
technical aspects of the actual data migration implementation.

References
[Ava] Avaloq, http:// www.avaloq.com
[BA04] K. Beck, C. Andres: Extreme Programming Explained: Embrace Change, Addison-

Wesley, Amsterdam, 2004
[BLW97] J. Bisbal, D. Lawless, B. Wu, et al.: A Survey of Research into Legacy System

Migration, Technical Report TCD-CS-1997-01, Computer Science Department,
Trinity College Dublin, 1997

[BM04] Ch. Burry, D. Mancusi: How to plan for data migration, in: Computerworld,
21.5.2004

[CG04] P. Carreira, H. Galhardas: Efficient development of data migration transformations,
Proceedings of the International Conference on Management of Data (SIGMOD),
Paris, France, 2004

[DMS] Data Management Suite (DMS), www.comit.ch
[Fin] Finnova, http://www.finnova.ch
[Gab07] C. Gabriel: Plattform-Wechsel: Parforce-Übung mit weitreichenden Folgen, in:

Schweizer Bank (6/2007), Zürich, 2007
[Hal08] K. Haller: Datenmigration bei Standardsoftware-Einführungsprojekten, in: Datenbank

Spektrum, Nr. 25, dpunkt.verlag, Heidelberg, 2008
[Hud98] J. R. Hudicka : An Overview of Data Migration Methodology, Select Magazine (April

1998), Independent Oracle Users Group, Chicago, IL, 1998
[Kru04] Ph. Kruchten: The Rational Unified Process. An Introduction, Addsion-Wesley,

Amsterdam, 2004
[LS07] LeanStream® – COMIT Implementationsmethodik, Version 3.0, Comit AG, Zürich,

2007
[Min07] M. Minetti: Ein aktuelles Bild der Schweizer Banken IT, www.inside-it.ch, 6.12.2007
[Mor06] J. Morris: Practical Data Migration, British Computer Society, Swindon, UK, 2006
[Pow] PowerCenter, http://www.informatica.com/de/products/powercenter/default.htm
[WG04] M. Willinger, Johann Gradl: Data Migration in SAP R/3, Galileo Press, Boston, MA,

2004
[WLB97] B. Wu, D. Lawless, J. Bisbal et al., "The Butterfly Methodology : A Gateway-free

Approach for Migrating Legacy Information Systems", in Proceedings of the 3rd
IEEE Conf. on Engineering of Complex Computer Systems (ICECCS '97), Como,
Italy, 1997

	1. Motivation
	2. System Architecture: Components and Dependencies
	3. Project Organization
	4. The Data Migration Triangle
	5. The Mapping Task
	6. Migration Delivery
	7. Quality Assurance
	8. Summary
	References

