Conference Journal 2013

Test Data Management in Practice

Test Data Management in Practice

Problems, Concepts, and the Swisscom Test Data Organizer

Do you have issues with your legal and compliance
department because test environments contain sensitive
data outsourcing partners must not see? Do your testers have
idle time because test data are missing or test environments
have inconsistent data? If any of these challenges applies
to your situation, the concepts of this paper can help. The
first concept is database-application-aware test cases. They
enforce that test cases for business applications provide all
information needed for repeatable execution. Second, a type
concept eases the test case maintenance and preparation
of test data for a test start without delays. Third, a test data
catalogue lists database objects for the various types. Finally,
architectural patterns describe various ways to set up test
environments with production and/or synthetic test data.
This paper focuses on integrating these concepts into the
daily test process. This includes the tool aspect, which we
illustrate with our Swisscom Test Data Organizer.

Motivation

Over the last decades, IT systems have become in-
creasingly complex. The same holds true for testing
them. Today, testers need an in-depth understanding
of IT architectures and testing methodologies. A
sample mobile app illustrates the phenomenon. The
app enables bank customers to do intra-day trading
in equities. The app runs on various smartphones.
It sends trades to the bank’s core banking system,
which forwards the trades to a stock exchange. End-
to-end tests for such architectures are challenging.
First, testing must consider various mobile plat-
forms and smartphone types. Second, many inter-
faces must be tested. Third and often overlooked,
testers need consistent test data on the smartpho-
ne, the core-banking system, and the trading server.
How to manage such test data efficiently is the focus
of this paper.

Test data management covers all concepts and
tools for ensuring that the data in the databases of
a system-under-test fulfill the preconditions of test
cases. Is there a test user in the core-banking sys-
tem? Is the tester allowed to trade certain financial
instruments? Is the account balance of his account
sufficient? Getting the precondition for a test case
right can be more challenging than its execution.

Software Quality Days 2013

35

This paper provides answers for the following ques-
tions:
¢ Why and when does test data management
matter?
e What are the benefits?
e What are the main test data management
concepts?
e How can the concepts improve processes and
make the daily work more efficient?

The answers are based on three pillars. Pillar one
is our conceptual work on testing database applica-
tions throughout their life cycle [1][2][3][4]. Pillar
two is a vendor’s perspective on developing and tes-
ting database applications [5]. Pillar three is made
of our insights from various consulting projects
[6]- The three pillars together allow us to formulate
today’s best practices in test data management.

The structure of the paper is as follows: after a short
discussion of related work (page 33), the paper exp-
lains aims and approaches of test data management
projects (page 34f). This is followed by the various
concepts for test data management (page 35ff) and
the system architecture of Swisscom’s Test Data Or-
ganizer (page 39f). After discussing the test data
management related tasks and roles in the testing
process (page 40ff), the paper concludes with a
short summary (page 42f).

Related Work

Test data management and testing databases are
highly relevant for many companies. However, it is
only a niche topic in research and on conferences.
Thus, only limited related work exists. The related
work falls mainly into three groups:

1. Testing in general. Much literature exists

on how to test. Perry [7] is a profound example.
His book spans from the various testing stages

or process aspects to testing data warehousing
and web applications. Other examples are books
preparing for certifications such as from ITSQB
[8]. They introduce a common terminology, discuss
testing techniques, and describe a general process

www.software-quality-days.com



Conference Journal 2013

for testing. Test data management or even testing
database applications is, if it exists at all, a side
aspect.

2. Papers on test automation of database
applications. These focus (mostly) on unit or unit
integration tests and describe test frameworks.
Examples are the AGENDA prototype (Deng, et

al. [9]) and the work of Dai and Chen [10]. More
theoretical work comes from Willmor and Embury
[11]. There are also commercial tools for testing
business logic in the database, such as the Quest
Code Tester for Oracle [12]. Obviously, testing
Oracle PL/SQL code demands dealing with (test)
data in the database.

3. Provisioning techniques for test data. A
straightforward concept for populating a database
is analyzing its schema. A random generator then
populates the tables with suitable data (Houkjeer
etal. [13]). This might help for unit tests or load
and performance tests for non-complex data
constellations. Binning et al. [14] suggest a more
sophisticated approach. They create a database
state based on one or more constraints respectively
queries. Suarez-Cabal and Tuya provide a concept
helpful for data warehouse tests. It remove rows
from large data sets that do not contribute to test
coverage [15]. Finally, there are techniques to
anonymize (test) data [16][17].

All techniques (besides anonymization) are espe-
cially helpful in early test stages (unit tests, unit
integration tests), which is common for academic
papers. This paper complements the existing work.
It combines industry experience and organizational
success factors (e.g., processes) while focusing on
late test stages.

Writing a Business Case: Aims &
Approaches

Managers invest in test data management projects
only if there is a business case. The business case de-
fines, first, the aim of the project. This is the need of
the business the project wants to address. Second, a
business case sketches the technical approach used
to achieve the aim. Finally, the business case provi-
des a high level project plan and cost estimations.
Costs and project plans are project-specific, while
the aims and approaches are generic. This section
explains the important aims and approaches.

Software Quality Days 2013 36

Test Data Management in Practice

A test data management business case aims to op-
timize the testing or/and to improve data privacy.
Business cases built around data privacy do not
argue with cost savings. They focus on regulation,
reputation, and trade secrets. Regulation means that
e.g.laws (e.g., data protection acts, bank secrecy) de-
mand the protection of certain data. Noncompliance
can result in law suits and interventions of regula-
tory bodies. Reputation focuses on how customers,
employees, society, etc., perceive the company. If, for
example, customer data become public and the me-
dia pick it up, current and potential customers ques-
tion the reliability of the company. This happened
with Lufthansa when frequent flyer data of German
politicians found their way to the press [18]. Finally,
trade secrets can be a reason to invest into test data
management, too. Examples are customer lists or
production process details. If competitors get copies
of such data, it can ruin the company.

Today, IT departments are aware that production
databases store sensitive data, so access control me-
chanisms are in place. Business users see only data
they need for their work. In contrast, IT departments
often ignore the risk of test servers. Many contain
production or production near data. The data are co-
pied periodically or on request from production to
the test servers. Such data eases (or might even be
a prerequisite for) system tests, system integration
tests, and user acceptance tests. As a result, many
developers and testers can potentially access pro-
duction data on test servers. They might even have
access rights and tools to extract large data sets (e.g.,
by running an SQL-queries for all customers). This
is a high risk for data loss. An aim of a test data ma-
nagement project can be to mitigate this risk.

Optimizing the testing by ensuring repeatable
tests, relevant test execution, and efficient data pro-
visioning is the second potential aim for test data
management projects. Relevance means that a test
execution reflects the purpose of the test case. A test
case might be that a US citizen who lives in Singapore
buys bonds at the London Stock Exchange. This test
case must not be executed with a US citizen living
in the US. Executing tests with wrong data is use-
less and a waste of time and money. Repeatability is
closely related. Testing and bug-fixing make a chain
of actions. When a tester finds a bug, he reports the
bug to the developers, who fix the bug. Then the tes-
ter re-tests to see whether the bug-fix solves the bug.
Repeatability requires that the re-test after the bug-
fix can be done with data/databases semantically

www.software-quality-days.com



Conference Journal 2013

equivalent to the one being processed when the bug
occurred.

Efficient test data provisioning appears on the agenda
when test organizations have mastered the basics.
One challenge can be the “logical distance” between
test data creation and consumption. It is common for
system integration tests that testers need data crea-
ted in applications, modules, or by batch jobs they do
not know. Then the data flow via other modules and
applications to get finally to the system under test.
Test data management projects can optimize how
testers get data from “logical far away” applications.
When test centers already use anonymous or syn-
thetic test data, they might want to improve the ef-
ficiency. Such test data provisioning might require
tool knowhow or that only dedicated persons are to
be allowed to do tasks such as anonymizing produc-
tion data. This demands an optimal organization to
keep costs low and prevent delays in test projects.

Optimization and data privacy are the two main
aims for test data management projects. There are
four main approaches a business case can propose
to reach them.

e Anonymization promises to take
production data as input and, by masking
or “shredding” data or swapping values,
to produce “sanitized” data. In reality, it
is more obfuscation or veiling than true
anonymization (see [3] for more details).

¢ Synthetic test data. This data are not derived
(neither anonymized nor non-anonymized)
from production data. They are defined and
“hand-made” for concrete test cases.

¢ Database application test tools. Test case
management tools must reflect the specifics
of testing database applications and IT
landscapes. This might require new tools or,
as is often easier to achieve, customizing tools
already in use.

¢ Processes & Organization. Database-
application-specific tools and anonymization
tools bring only benefit to the organization
when aligned with the daily work (i.e., the
testing process and the organization).

Figure 1 summarizes the suitable approaches for
concrete projects. If the aim is “data privacy,” the
approaches of “anonymization” and “synthetic test
data” help. Certainly “processes & organization”
must be addressed too. The aims “relevance” and

Software Quality Days 2013

37

Test Data Management in Practice

“repeatability” require improved “tools” and adjus-
ted “processes & organizations.” In contrast, impro-
ving “test data provision” requires working on “pro-
cesses & organization” first. Certainly, better tools
might bring benefits, too.

TDM Project Aims: Why to invest? Budget & Timeline

I\
i [N ) VT ! 1

TDM Approaches: What to invest in?

Data Privacy

Reputation
Regulation
Trade Secrecy

Repatability P

Test Optimization

PROJECT TDM

Phase 1 |Internal | 80000
External | 125'000
Phase 2 |Internal | 145000
Exteral | 135000

385000

>

PROJECT TDM
| Phase 14

Figure 1: Business Cases for Test Data Management Projects

Database Applications &
Application Landscapes

Test Data Management Concepts

A successful test data management project imple-
ments three concepts: database-application-aware
test cases, test object types, and a test catalogue.
This section describes them and brings them to-
gether in one UML class diagram. Furthermore, it
discusses architectural patterns. They describe how
to set up test environments focusing on what test
dataare used. This is a need if the business case aims
for data privacy.

Database-Application-aware Test Cases

Database applications incorporate one or more da-
tabases. The state of the database (i.e., its data) im-
pacts the test result. So a test case must specify the
database state precisely. Then the test case executi-
on is repeatable. Such test cases are named databa-
se-application-aware test cases (Figure 2; see [3]
for a detailed discussion).

Many test cases for database applications “do so-
mething” with one object, the database test object.
The one object can be a US citizen living in Singapo-
re when testing tax reports. The one object can be a
debit card when testing ATM withdrawals. However,
the one object alone is not sufficient to run the test
case. ERP systems, for example, have hundreds or
thousands of tables. They must contain clients, ac-
counts, branches, etc. The data must be “consistent
enough” that the system runs and does not cause fal-
se positives. Only few data items really matter, e.g.,
the system date for testing end-of-year batch jobs.
All tables together with their data form the databa-
se test system state. To formulate it in a more pro-
saic way, the database test system state sets the sta-
ge for a play. The play is the test case. The database
test object is the main actor.

www.software-quality-days.com



Conference Journal 2013

Certainly, test cases must define the “normal” test
case attributes as well. These are the test steps, the
GUI input, and expected GUI-output. If the test cases
provide all this information, database-application-
aware test cases ensure repeatability.

‘ Test case steps to be executed |

System under test

(GUI) input parameter values Expected output parameter values

Database test object

Database test system state

Figure 2: Database-application-aware test cases

Test Object Types

Database test objects are often complex and have
many attributes. Test object types make clear which
attributes really matter. A type definition consists of:

¢ Name and Description. They ease using and
maintaining a type for testers.

¢ Semantically mandatory attributes. When a
database test object of this type is created, all
semantically mandatory attributes must have
the values as specified in the database object
type definition. This has implications for
writing test cases too. If a test case needs an
US client living in Singapore, the test case must
use a database test object type with these
attributes. If none is available, testers must
define a new type.

¢ Consistency mandatory attributes. These
attributes ease the test data creation but
must not be relied upon while defining and
executing test cases. GUIs or databases often
demand attributes to be filled out that are not
relevant for the test case. An address might
require a city and a ZIP code, even if the test
case only needs the country. Consistency
mandatory attributes are a way to write down
suitable values and value combinations work
(e.g., ZIP code “8001” and city “Zurich”) to
smooth the test data creation. Testers can
never rely on any of these values.

¢ Irrelevant attributes. They are not relevant
for the test case and are not required by the
system. They can have an arbitrary value or
remain empty/NULL.

¢ Reusability flag. The flag defines how objects

Software Quality Days 2013

38

Test Data Management in Practice

of this type can be used. When the flag is set
to “reusable,” test cases must not modify the
values of semantically mandatory attributes.

Test centers or projects must manage their test ob-
ject types. A straightforward way is with an Excel
sheet, as in Figure 3. The Excel sheet lists five types
plus the relevance of and values for certain attribu-
tes. When a tester writes a test case, he might need a
customer with the country of residence “CH.” During
the test execution, the country changes to “AU.” Then
a suitable test object type must consider two requi-
rements. First, the type must have a semantically
mandatory attribute “Country of residence” with the
value “CH.” In Figure 3, three test object types ful-
fill the requirement: “Credit Rating Tests 5”, “Credit
Rating Tests 6.” and “Swiss Wealth Management.”
The second requirement is that the test object type
must not be flagged as reusable, because the test
case changes the semantically mandatory attribute
“Country of residence.” After the execution of the
test case, the used object is “destroyed.” The object
cannot be used for rerunning the test case, since the
country is now “AU.” The second requirement, “non-
reusable,” narrows down the list of suitable test ob-
ject types for the sample test case to “Swiss Wealth
Management.” Before the execution of the test case,
an object of the type “Swiss Wealth Management”
must be created or found in the existing data. Both
the country of residence and the customer type are
fixed (“CH”/”Wealth Management”). All other attri-
butes can get any value. A suggestion provided by
the definition is to use “CH” as nationality.

A simple Excel sheet, as in Figure 3, looks like a so-
lution for one tester. However, all testers of a project
(or even complete test centers) can collaborate if the
Excel document is put on a Sharepoint server.

The Excel sheet comes to its limit when database test
object types are complex. Sketching a diagram as a
specification is one solution (Figure 4). The figure
exemplifies a type with a US client living in Austria
having one safekeeping account with two specific
equities.

Certainly, a tool-based solution is possible instead of
Excel sheets. The Swisscom Test Data Organizer de-
scribed later is an example. Tools can ease the integ-
ration of the type management into the test process.

www.software-quality-days.com



Conference Journal 2013

Test Data Management in Practice

A 8 C D E F G
il Test Object Types Reusable Country of residence Nationality Customer Type Customer Segment Credit Rating
2 UK Corporation in London YES UK UK Corporation

3 SME US non US Citizen NO us PL SME

1 8wiss Wealth Management NO CH CH Wealth Management

s Credit Rating Tests 5 YES CH CH Corporation F3 BBB-

& Credit Rating Tests 6 YES CH CH SME c1 B

Figure 3: Simple Test Object Types for Clients (grey cells:
semantically mandatory, white cells: consistency mandatory,
empty cells: irrelevant)

The benefits of test object types are improved
maintenance, clear communication, and delay-free
starts of testing. !

Improved maintenance addresses that objects in a
database change, whereas regression test cases are
often stable for years. A test case might define that
it should be tested using the client with ID #466119.
The reason is that this client lives in Switzerland.
Some months later, the client moves to Australia.
The test case still points to the client though he is
not useful any more. Any tests run with this client
are worthless; nobody might notice that. Test object
types solve this. A test object type defines the kind
of object needed when writing the test case. It de-
fers the selection of a concrete object until the test
execution.

Clear communication is a side-effect of test object
types. A test case stating, “Use suitable US custo-
mer,” is not clear for anyone besides perhaps the per-
son who writes the test case. A test case specified as
in Figure 3 is clear. This improves collaboration and
know-how transfer. This helps in two scenarios: if
testers in a project change or if one tester writes the
test case and a second tester executes the test case,
potentially in a country time zones away.

Delay-free starts of testing means that the start of
a test is not blocked by missing test data. A test ma-
nager derives from the test cases what test data he
needs. He can do this well before the start of testing.
He plans which testers provide the data, or he con-
tacts other teams from which he needs data. This is
important if the data cannot be created ad-hoc but
requires, for instance, one or two overnight batch
jobs to run beforehand.

1 While test object types are helpful, there is no need for a type concept
for database test system states. A state should be described in detail to
understand its purpose (e.g., end of year test 2013). However, one file
with the database export is sufficient. It can be imported into as many
test environments as needed.

Software Quality Days 2013

39

CusID: NUMBER(12)
Name: VARCHAR2(100)

Nationality: VARCHAR2(3)
Country of residence: VARCHARZ(s)m

e —

AcD: NUMBER(12)
Currency: VARCHAR2(3)

Safekeeping Account
SKAID: NUMBER(12) ~

Currency: VARCHAR2(3)
[ \

PosID: NUMBER(20)
Equity: VARCHAR2(12)
Quantity: NUMBER(20,2)

3000

Figure 4: Complex Test Object Type Specification

Test Data Catalogue

When a tester is asked to execute a test case, she
opens the test case definition, e.g., in Jira or HP Qua-
lity Center. She sees the test steps she has to execute.
She sees the database test system state and the data-
base test object type. Next, she must find a concrete
objectin the database that fits to the database object
type, e.g., a US citizen. To find a suitable client, she
can query the database and its tables. This works
if all testers can access the databases on an SQL le-
vel and the queries are not too complex. Also, tests
should not interfere if, by chance, various tests use
the same objects.

The mentioned criteria can be met, but probably
only seldom. Then a database test object catalogue
helps which...
e provides a list of suitable objects for each
database test object type; and
¢ allows reserving database test objects for
testers.

Figure 5 contains a sample test data catalogue rea-
lized in an Excel sheet. Again, if put on a Sharepoint
server, even complete teams can work with this one
catalogue. A more advanced concept is a dynamic
catalogue on the level of a test center. It is updated
based on querying the database for “fitting” objects.
These queries can be submitted in an ad-hoc mode
(the database is queried when a tester looks for an
object) or run as overnight batch job. Later, this pa-
per sketches an implementation.

www.software-quality-days.com



Conference Journal 2013

till...

Reusable
YES

1 DB Test Object Type
2 UK Corporation in London

Assigned to ...
#455464 -
#7895
= #872424 —
s SME US non US Citizen NO Jane

#172885 2-Mar-2013
#366251 Bob 4-Mar-2013
#379115 -
#418225
477521 Urs 31-Dec-2012
#826234

11 Swiss Wealth Management  NO #287218 Aline 22-Apr-2013

Credit Rating Tests 5 YES #634321

#634322

14 Credit Rating Tests 6 YES #634328

Figure 5: Excel-Based Test Data Catalogue

UML Class Model for Test Data Management

The UML class diagram for test data management
(Figure 6) unites the three concepts of database-
application-aware test cases, test object types, and
a test data catalogue. It is the base for our Swisscom
Test Data Organizer (described later) and can also
guide other test centers when incorporating test
data management into their tool chain.

The class diagram has three areas. The upper area
represents typical functionality of test management
tools:
¢ Test Case Definition. This class represents a
test case/test case definition.
¢ Test Case Execution. This class represents
one execution/result of a test case execution.
The only extension compared to “normal” test
case executions is a reference to the database
object that was used when running the test.
The lower area represents the database of the sys-
tem under test.
¢ Database Object. This represents a data
item (or a combination of data items) in the
database of the system under test.
The middle area contains all classes specific for test
data management. Today’s test management sys-
tems usually do not provide this functionality.
¢ Database Test System State. This class
models a state as a database export, e.g., an
Oracle database export file. The class stores
the name and the location of the export file
plus links to the database from which the
export comes. Thus, one repository can
manage all exports from various databases of
a test center.
¢ Test States Repository. This class is
responsible for managing the database test
system states of the various applications.
¢ Test Data Catalogue. This class manages a list
of entries and provides the Update() method
that update the entries.
e Entry. An entry links to an actual object in

Software Quality Days 2013

40

Test Data Management in Practice

the database and states for which database
test object type it could be used. The database
object can be locked for exclusive use by a
tester. This prevents various persons’ using
the same object and interfering.

+ Database test object type. Test cases can
have one database test object type. It has
common attributes such as a name and
a description plus the reusable flag (see
page 36). As an abstract class, only its two
subclasses can be initialized:

- Static DB test object type. A static type is a
user-defined list that links to suitable database
objects.

- Dynamic DB test object type. The class has two
attributes, a database connection string and an
SQL query. The SQL query is used by the Up-
date() method of the class Test Data Catalogue
to query the database and to update its entries.
The connection string identifies the concrete
database from which to pull the data.

Generic Object

Test Case Definition 1 0.* Model for Testing
g

Test Case Execution

@0 0.*
01y L — 0.1
DB Test System State DB Test Object Type

Name
Description

Description Entry
1 DumpRepository Reusable = v Update()
b DumpFilename Z> 01 Reserved for 7

Reserved till o7

Test Data Management Specifics
Test Data
s

Test States
Repository

Name 1

r
Dynamic DB Test Object Type

SQLQuery
ConnectionString

1
‘ Static DB Test Object Type ‘

0.

L 0.*
DB Object

.
- | System under Test

Figure 6: Object Model - Test Data Management

Data-privacy Aware Test Environments

When data privacy issues are a reason for a test data
management project, it raises the question: should
test environments have production data? Various
patterns exist that differ when it comes to using
production and/or synthetic data for testing. Figure
7 illustrates the main patterns. The classic pattern
copies all data from production to the test environ-
ment. There are no restrictions in place to prevent
testers and developers from seeing production data.
The on-top pattern protects production data to a
certain degree. The test environment is a copy from
production. It is enriched with synthetic test data.
There is, for example, one tenant of the application
working with the synthetic data. So (certain) testers
test on the tenant with synthetic data. If they have no
database access, these testers do not see production
data.

www.software-quality-days.com



Conference Journal 2013

The castrate & inject pattern sanitizes the database
from critical data by deleting critical data (“-“) or
masking/anonymizing it (“*M*”). This is can be done
on a table, column, or row level. So names, such as
IBAN account numbers and booking texts, or rows
of customers from a specific country are deleted. If
testers need some kind of data that is completely eli-
minated (e.g., IBAN numbers), synthetic data are in-
serted into the tables (“Synth”). Finally, the isolated
towers pattern provides maximum data protection.
The production and the test environments do not
exchange any data. The test environment contains
only synthetic data. Software vendors rely on this
pattern, if their customers are not willing to provide
database copies for them or if they want to build up
a controlled data set for testing and demonstration
purposes. This pattern is expensive for late-testing
stages, such as system integration test environments
or even system test environments for complex appli-
cations. However, it might be the only option for ven-
dors or in the case of cross-border regulation issues.

Isolated Towers

Classic Castrate & Injes

[~ (= 1c L mIe T ol
Prog Prod Prod
Prod.
[+ [ 2] Al 2]
sy == ==
o & S s - @ e
N =3 Bl S S u
Prog 'Synih Synth Synth
PROD TEST PROD TEST PROD TEST PROD TEST

Figure 7: Production and Synthetic Test Data in Test
Environments - Four Patterns (The eye symbolizes data testers
can see.)

Swisscom Test Data Organizer:
The System Architecture

Currently, most test management tools do not sup-
port test data management well. Thus, test centers
can either invent or invest in additional tools or try
to integrate the missing aspects in their existing tool
chain. Obviously, the latter is less expensive and less
risky. It allows the user to focus on solving the test
data management challenges and to rely on industry
best practices for everything else. Consequently, the
Swisscom Test Data Organizer builds on top of HP
Quality Center. It was chosen for three reasons:

1. Process-focus. Quality Center supports the
complete testing process from test cases and test
execution to test reports. 2

2. Openness. HP is a vendor that supports tool

2 Many potentially better known tools, such as Selenium, JUnit, and
HP Quick Test Professional, do not meet this requirement. They are test
automation and not test management tools.

Software Quality Days 2013

Test Data Management in Practice

extensions. This is a technical decision, but it has a
strong foundation in HP’s partner-friendly business
model.

3. Relevance. Quality Center has a relevant
penetration in the financial industries in
Switzerland.

The Swisscom Test Data Organizer extends two
Quality Center modules, TestPlan and TestLab. Test
engineers, analysts, and managers can specify and
manage test cases in TestPlan. Test managers can de-
fine test sets in TestLab. A high level understanding
of atestsetis that it contains a set of test cases. They
might belong to one software release and, thus, are
tested together. TestLab documents also the test re-
sults.

The Swisscom Test Data Organizer uses three op-
tions for parameterizing Quality Center:
¢ Adding new attributes and buttons to existing
GUI masks.
¢ Implementing new functionality in Visual
Basic Script. The code is triggered e.g., when
pushing buttons
e Accessing Quality Center data via the Quality
Center API Open Test Architecture (OTA) with
a web application

The driving architectural principle is to implement
as much as possible in Quality Center. Thus, the Test
Data Organizer has three components (Figure 8),
TDO-EXT, TDO-CUS, and TDO-SCHEMA. TDO-EXT is
a web application. It implements the test data type
management and the test data catalogue in Visual
Basic. These features are too complex for Quality
Center internal extensions. TDO-EXT runs outside
Quality Center in a Microsoft IIS. TDO-CUS con-
tains the parameterization of Quality Center: new
buttons, lists and Visual Basic Script code running
within Quality Center. This covers the test case ex-
tensions for database test system states, test object
types, and recording the concrete database object
used in tests. It also implements links to TDO-EXT.
TDO-SCHEMA is a database schema. Its tables store
data that cannot be “pressed” into the Quality Center
data structure. One example is of the database test
object types. The types are not a simple list of type
names (this would be easy to implement in Quality
Center). The types also have additional attributes
such as SQL queries (see Figure 6), which do not fit to
the Quality Center schema. All tables, Quality Center
tables and TDO-EXT and TDO-CUS tables, reside in
the same Oracle database on which Quality Center

www.software-quality-days.com



Conference Journal 2013

runs. This prevents access problems.

The following section provides some screenshots of
the tool and explains the roles of various GUIs in the
test process.

Microsoft IIS

HP Quality Center
Test Automation

Test Plan|| Test Lab |::>

‘ System under
Test

Figure 8: System Architecture

Test Data Management in the Testing
Process

Managers invest in projects to achieve sustainable
improvements. Sustainable improvements for test
data management means, first, to integrate the test
data management tasks into the test process and, se-
cond, to clarify roles and responsibilities. This sec-
tion explains the best practices following a high level
test process (Figure 9).

@ Exccute Tests
* Execute Test Case
« Select Matching DB Object

© Test Data Provisioning
*+ Manual creation
* Script-based creation

@ Pian Test
« Compile Test Cases
* Order Test Data

© specify Test Cases
« Specify Test Case

+ Choose Test Data Type
. Choose System State

Manage Types & States!

Figure 9: Test Data Management and the Testing Process

Step Specify Test Cases

The first step in the high level test process is the spe-
cify test case step (Figure 9, @). The tester takes the
software specification, analyses it, and writes the
test cases. No single line of code might exist at this
pointin time. The tester has to fill out two additional
attributes per test case. The attributes are the data-

f.}e HP Application Lifecvcle Management 11.00

Test Data Management in Practice

base test object type and the database test system
state. Figure 10 contains a screenshot from HP Qua-
lity Center with the two additional attributes. They
are implemented in the TDO-CUS module.

Step Plan Test

When all test cases are defined, the test manager can
start planning (Figure 9, @®). She compiles the test
case set to be executed. It contains newly defined
ones plus older regression test cases. This is done in
Quality Center. The test manager plans the staffing
and defines milestones. She orders the needed inf-
rastructure: servers, databases, or mobile devices.
Her new test data management task is to plan the
test data activities, which can be done by her testing
team. If a centralized test data team exists, the test
manager can order her test data with them. This can
require some previous coordination. The test data
ordering itself is done with the test data order form
(Figure 11). It runs outside Quality Center in the
TDO-EXT module. TDO-EXT retrieves the list of da-
tabase test object types. This list is based on the test
case set compiled in Quality Center. Next, TDO-EXT
queries the system-under-test to get the number of
existing objects per test object type. Then the test
manager can decide how many test data objects of
which type she wants to order. Her test order trig-
gers the actual test data provisioning.

I[i2] Application Lifecycle Management

= Back Forward: Tools i ﬂelp =

7/ Dashboard B (e e e e

% Management ] B & X\ T-5 E E §Px-23 2 @6

[‘E_’l Requirements ¥ [[.] @ ! P Hame Details | Design Stepz # Farameters | Attachmentz Test Configurations Feq Cov

= Subject

‘__u Testing -4 +E| Unattached * Test Mame: | SEPA payment in branch | *THpe: | 2 MANUAL |
£ TestResources = Payment Crestion Date: | 09.03.2012 [=] s

; % SEPA papment in branch =

& TestPlan 2 Payment from EUR accou Status: |Design =]

L] TestLab #[ Trading TestID: 13 ﬂ Testdatatype: | CH Customer E|
[l Defects

Figure 10: Test Case in HP Quality Center with extensions “Database Test System State” and “Database Test Object Type”

Software Quality Days 2013

42 www.software-quality-days.com



Conference Journal 2013

Test Data Management in Practice

Order Testdata

swisscom

User:
Project: SvassTestingDay2012
Domain: TDO_EXT

Order Testdata

Testset Payment

rtass -

@ Generate by TDO-EXT
© Generate by QTP

Testdatatypes used in this testset

Offshore Customer F/F ¥

datatype e able e ed Avallab

CH Customer %

T ST

Figure 11: Test Data Order Form

Step Test Data Provisioning

“Test data provisioning” is the umbrella term for
creating or identifying test data (Figure 9, ©). Iden-
tifying test data can be done by querying the databa-
se. This might need more time in a complex IT land-
scape without federated database schema, but it is
often a viable option.

The second option is to create test data. This can be
a manual data input via the GUI or by some GUI-level
test automation in QTP or Selenium. It can be an in-
put file for batch jobs, or data might be loaded on the
database level using SQL, too. The various options
are discussed in more detail in [3].

The management has to make two organizational
decisions. First, responsibilities have to be defined.
Three options exist. Each tester takes care of his
data. One team member takes care of all data of the
team. Finally, a centralized test data management
team can provide the data. The choice depends on
the complexity of the environment or needed tool
know-how and governance decisions in case of test
data anonymization.

The second management decision is the process in-
tegration in case of dedicated persons or teams pro-
viding test data. The orders have to be tracked and
assigned to test data provisioning engineers. This

Software Quality Days 2013

43

can be done by email, but a ticketing system such as
Jira is preferable.

Step Test Execution

When the application is ready for testing, test engi-
neers test manually or start the test scripts (Figure
9, ®).In any case, the test case defines the test object
type. It does not point to a concrete test data object.
The test data catalogue helps by listing all database
test data objects of the needed type. The Swisscom
Test Data Organizer implements this functionality in
the TDO-EXT module. Quality Center calls it at the
start of the test case execution. TDO-EXT queries the
TDO-SCHEMA for fitting objects for the type speci-
fied in the test case. In the example in Figure 12, the
test case is “CH Customer.” TDO-EXT identifies “10.
Schmid, Florina” as the only suitable object. When
pushing the “OK” button, the object is pushed back
into Quality Center. Thus, the test report contains
the full information which data were used for the
test execution. This eases analyzing bugs and retes-
ting them.

www.software-quality-days.com



Conference Journal 2013

Q Selection
swisscom Testdatatype: CH Cus r
Systemelale ECD 201 KE 2

-— -

Figure 12: DB Test Object Selection GUI

Task Manage Types & States

Managing database test object types and database
system states impacts all test cases and all projects
in a particular area. Properly done, there are syner-
gies between projects and testers if types and states
are coordinated. Then various projects use the same
scripts for creating objects of a certain type. This re-
duces analysis, automation, and maintenance costs.
Figure 13 shows the GUI implemented in TDO-EXT
for the type management. It allows adding new test
object types, static and dynamic, reusable or non-
reusable, as described earlier.

Roles and Responsibilities

We conclude this section with a table listing all ro-
les - test engineers, test managers, test analysts, and
test data providers - and their tasks (Table 1). This
provides a good overview of what test data manage-
ment means in practice.

Role TDM tasks

Test Engineer | ¢ Define the database test object type for

each test case

o Define the database test system state for
each test case

¢ Choose and document chosen test objects

for manual test execution

Test Analyst * Manage test object type definitions

¢ Manage system state definitions

Test Manager | e Identify test data needs/order test data

Software Quality Days 2013

44

Test Data Management in Practice

Tost Gets | Teo Rure Testdatatype Management
TestSets Bt View Tests Favorkes  Ansysis Y T T
#nlxlc-lov-2 a4 g}_m&mu»m_-&;m,rms« X OV-M@ @/ ‘Q
= -
= £ Reat Dotsds | En e G PMCTIF D) [Pl | Ausoation | Ailacherts | Ukad D
# [ Unaitached User
+ [ Coee Barking gL name Test: TestName  Type Statum Propect: Smsalensnglia,
L ﬂli,"! Tl 1BEPA papmen_ = SEPA papme_ MANLIAL TR
1), Pt
i, Standeg Dides
£ SonOn/SignOt .:‘ e wm_u}um x conceton | @ (5| @ oswwe
T b S i (214 |
* R Mawr Fun 3-89 19-18-4
Testdata Selection

Satd Tamtdamsnyma

Figure 13: Managing and Adding Test Object Types

Test Data ¢ Create and manage database test objects

Provisioning | e Create and manage database test states

Engineer *)

Table 1. Roles and test data management related-tasks - *)
might be taken over by test engineers themselves.

Summary

Test centers that deal with many business and data-
base applications invest in test data management for
two reasons: improving data privacy, i.e. having less
or no production data in test environments, and/or
making testing more efficient. This paper describes
four concepts to reach the aims:

1. Database test object types. They are an
easy-to-maintain way to specify with which kind of
object a test case is executed. The key point is that
the test object type is stable over years, whereas
objects in the database change frequently.

2. Database-application-aware test cases. They
require the specification of test object types and
database system states in test cases. This ensures
repeatable tests.

3. Testdata catalogues. They point to concrete
objects that “implement” a test object type.

4. Privacy-aware test environments. They

reduce or remove exposure of production data to
testers and developers.

www.software-quality-days.com



Conference Journal 2013

The concepts improve the various steps of a test pro-
cess, from test case definition and planning to the
reliability of the test results. Tool support speeds
up the adaption within a test center. The best way is
to integrate test data management into an existing
tool chain. The idea is to add the missing features to
one (or more) of the tools already in use. The Swiss-
com Test Data Organizer follows this path. It enhan-
ces HP’s Quality Center with test data management
functionality.

To conclude, testers, test managers, and line mana-
gers get new ideas from this paper how to improve
their test center and their daily work. However, a pa-
per cannot address one important factor. It is the hu-
man factor. Improving test data management means
improving your organization. This demands guiding
your employees through the transition process.

The author thanks Dr. Hans-Joachim Lotzer, Daniel
Gehr, and Michael Meister for the valuable discussions,
for getting the ideas to work in and with QC, and for
the design and implementation of the GUIs.

References

1. Matthes, F.; Schulz, C.; Haller, K.: Testing &
quality assurance in data migration projects, IEEE
International Conference on Software Maintenance
(ICSM), 25-30 Sept. 2011, Williamsburg, VI

2. Haller, K.: White-Box Testing for Database-
Driven Applications - A Requirements Analysis,
DBTest’09, June 29, 2009, Providence, RI

3. Haller, K.: The Test Data Challenge for Database-
Driven Applications, DBTest 10, June 7, 2010,
Indianapolis, IN

4. Haller, K.: On the Implementation and
Correctness of Information System Upgrades, IEEE
International Conference on Software Maintenance
(ICSM), 12-18 Sept. 2010, Timisoara, Romania

5. Haller, K.: Web Services from a Service Provider
Perspective: Tenant Management Services for
Multitenant Information Systems, ACM SIGSOFT
Software Engineering Notes, Vol. 36 (1), 2011

6. Haller, K.: Test Data Management-Addressing
Data Sensitiveness and Compliance without
Sacrificing Productivity, presentation at the Testing
& Finance Europe 2012 Conference, May 16th/17th
2012, London, UK

7. Perry, W. E.: Effective Methods for Software
Testing, 3rd edition, Wiley Publishing, Indianapolis,
IN, 2006

Software Quality Days 2013

45

Test Data Management in Practice

8. Graham, D., et al.: Foundations of Software
Testing: ISTQB Certification, rev. ed., Thomson
Learning, London, UK, 2008

9. Deng, Y., Frankl, P. G., Chays, D.: Testing
database transactions with AGENDA, ICSE’05: 15-21
May, 2005, St. Louis, MO

10. Dai, Zh., Chen, M.-H.: Automatic Test Generation
for Database-Driven Applications, SEKE‘07, July
9-11, 2007, Boston, MA

11. Willmor, D. and Embury, S.: An Intensional
Approach to the Specification of Test Cases for
Database Systems, ICSE’06, Shanghai, China, May
20-28, 2006

12. http://www.quest.com/code-tester-for-oracle,
last accessed on March 5th, 2012

13. Houkjeer, K., Torp, K., Wind, R.: Simple and
Realistic Data Generation, VLDB’06, September 12-
15, 2006, Seoul, Korea

14. Binning, C., et al.: MultiRQP - Generating Test
Databases for the Functional Testing of OLTP
Applications, DBTest’08, Vancouver, Canada, June
13,2008

15. Sudrez-Cabal, M., Tuya, ].: Using an SQL
Coverage Measurement for Testing Database
Applications, SIGSOFT’04/FSE-12, Oct. 31-Nowv. 6,
2004, Newport Beach, CA

16. Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-
Preserving Anonymization of Set-Valued Data, VLDB
,08, August 23-28, 2008, Auckland, New Zealand
17. Zhong, Sh., Yang, Zh., Wright, R.: Privacy-
Enhancing k-Anonymization of Customer Data,
PODS 2005, June 13-15, Baltimore, MD

18. Up and Away: A Dogfight Over Frequent-Flyer
Miles is Distracting Germany's Politicians, The
Economist, August 8th, 2002

The Author

Klaus Haller

Klaus Haller works for the testing consulting
team of Swisscom IT Services in Zurich.
His focus is testing information systems
landscapes, including methodology,
processes, and organization, especially in the
areas of test data management, compliance
testing, and IT risk.

7 klaus.haller@swisscom.com

www.software-quality-days.com



