
The Test Data Challenge for Database-Driven Applications
Klaus Haller

COMIT AG
Pflanzschulstr. 7
CH-8004 Zürich

Switzerland
klaus.haller@comit.ch

ABSTRACT

Business applications rely typically on databases for storing and
processing their data (database-driven applications, or DBAPs).
Testing DBAPs requires testing the application logic plus the
interaction between the application logic and the database. Thus,
DBAP test cases consist of input and output parameter values, the
function to be tested, and an initial database state (i.e., DBAP test
data). Various test data provisioning methods exist, such as
manual test data design, generators for synthetic test data, and
live-system snapshots. Many criteria and factors influence which
method is optimal for a given project setting, such as costs,
quality, data privacy, etc. This paper presents our methodology
for guiding software development projects towards the DBAP test
data provisioning method best suited for them.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/program verification,
D.2.5 [Testing and Debugging]: Testing tools, coverage testing,
H.0 [GENERAL]

Keywords
Information systems, databases, testing, test data, test coverage

1. INTRODUCTION
Today, most business applications rely on databases for storing
and managing data (DBAPs). The rise of object-relational
mapping and persistency frameworks like Hibernate [1] eases the
development of DBAPs. The frameworks allow many database
details to become transparent. However, one truth has not
changed: Fruitful testing of DBAPs is possible only if there is test
data in the tables of the DBAP (DBAP test data). Projects often
ignore this fact until it is too late, and project managers end up
making ad-hoc decisions without a conceptual foundation. One
reason might be the lack of a methodology for approaching the
DBAP test data challenge. We address this need in this paper.
The role of input data and how it is derived is well understood for
non-DBAP applications (see, e.g., the survey of Zhu, et al. [2] on
test data and coverage). In contrast, DBAP test data is a niche
topic. Even testing methodology books (e.g., Perry [3]) do not
cover it. Only most recently has the combination of databases (or
DBAPs) and testing received more attention. A key concept is the
quintuple model for DBAP test cases (Willmor et al. [4]). The
first three elements of the quintuple model are the procedure to be

tested, the input parameters, and the expected output parameters.
These elements are the same for normal test cases; however, two
new elements exist: the initial database state (i.e. DBAP test data)
and the expected result state.
Groundbreaking work in the field of DBAP test data is the
AGENDA prototype (Deng, et al. [5]). It generates test data with
techniques such as boundary analysis for testing single SQL
statements or complete transactions. The work of Dai and Chen
[6] falls into the same category. They follow a holistic approach
covering the complete testing process from database schema and
program sources and their analysis, to test adequacy criteria and
automatic execution.
Houkjær et al. [7] describe how to generate DBAP test data based
on database catalogue information, thereby dealing with foreign
key relationships. Willmor and Embury [4] contribute a concept
for intensional specification of DBAP test cases. They analyze the
DBAP tables for matching data. If no matching data exists, test
data is generated. Binning et al.’s work on Muli-RQP [8] follows
the same vision. They generate a test database state based on
declarative test case specifications. In a second paper, Binning et
al. [9] address how to test the correctness of a database system.
Their system takes one or multiple queries as input together with
query results and a database schema. As a result, they get one
possible suitable database state as output.
All of these papers focus on how to create data. In contrast,
Suárez-Cabal and Tuya [10] assume having a large database.
Their idea is to remove all rows from the database tables that do
not contribute to additional test coverage. Test coverage is also a
topic for Kapfhammer and Soffa [11]. They propose a coverage
criterion based on a database interaction control flow graph.
The important research mentioned above focuses (mostly) on
algorithms for generating DBAP test data. We bring in a different
focus. We focus on developers and testers in commercial software
development projects. They need to know which concrete DBAP
test data provisioning method is optimal under which
circumstances. Our work on DBAP test data is based on
experience spanning commercial projects in areas such as core-
banking system implementation projects, application
management, and software development. In our previous work,
we focused first on getting a holistic understanding of DBAPs and
testing [12]. The next step was identifying important factors
influencing the decision for a method for deriving DBAP test data
[13]. This paper extends our work by analyzing the interplay
between impact factors and concrete DBAP test data provisioning
methods. It answers questions such as: how do privacy needs go
together with using live-data?
We structure our paper as follows. Section 2 presents the sample
application we then use throughout the paper. We introduce
compliance levels for assessing DBAP test data quality in
Section 3. Section 4 compiles the most popular methods for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DBTest'10, June 7, 2010, Indianapolis, Indiana, USA.
Copyright © 2010 ACM 978-1-4503-0190-9/10/06... $10.00

providing DBAP test data. Section 5 describes our methodology
and the impact factors driving the decision process. We link the
impact factors to the different test data provisioning methods in
Section 6. To the best of our knowledge, this is the first paper
discussing the pros and cons of the various methods while
considering different impact factors thoroughly and providing
practical useful guidelines. In Section 7, we conclude with a short
summary and point out the remaining questions.

2. Sample Application
Our sample application is a three-tier-application for credit rating
(Figure 1). Banks use credit rating applications for estimating how
likely a customer is to pay back the loan and pay the interest. The
rating determines whether a customer gets loan and at which
interest rate.
The presentation layer has two sample GUIs: One GUI is an input
mask for new financial statements. It has input fields for the
balance sheet date, the sum of all assets, the sum of all liabilities,
and the earnings before interest and taxes (EBIT). If the user
wants to save the financial statement, the validation procedure
P_VALIDATE_FS checks whether assets and liabilities are equal.
This check is part of the presentation layer. If the check succeeds,
procedure P_STORE_FS writes the data into table
T_FINSTATEMENT. The first column stores the company ID,
which refers to a company in table T_CUSTOMER. The second
column stores the balance sheet date; the third, the sum of all
assets. Additional columns store the sum of all liabilities and the
EBIT. The last column stores the rating class if it has been
calculated. The second GUI is for approving the financial
statement by a second or third person. The application layer has a
second procedure: P_CALC_RATINGS. It is a batch job that
executes overnight and calculates the rating for all companies.
The workflow itself (not illustrated) also belongs to the business
logic layer.

The table T_CUSTOMER stores customer details. It has three
columns: a unique company ID, the company name, and whether
the company is a corporation. Table T_TRANSLATION stores
the GUI texts in German and English. Thus, the text shown in the
masks can switch languages depending on the parameterization
item “Language” in table T_PARAMETRIZATION. The
parameterization table also contains the name of the bank shown
in the masks. Two additional parameterization items are
“Limit_Approval_2” and “Limit_Approval_3.” The values
specify for which balance sheet totals two or three persons have to
approve the loan.

3. Test Data Quality
The quality of different test data sets can differ; we can compare
their quality only if we have a notion of quality. Therefore, we
rely on the concept of test data compliance levels [12]. There are
four levels: The lowest level is type compliance. It requires that
the data reflect the types of columns. If the ID column of table
T_CUSTOMER is of type “NUMBER,” the test data are numbers
and not strings. We can generate type compliant test data easily.
Aside from random generators for the different data types, we
need table names, column names, and column types. The database
catalogue provides this information. However, type compliance
does not guarantee that we can load all rows into tables
successfully that we prepare. If the tables have constraints, rows
might be rejected.
If the test data respects all constraints, the database accepts all
rows we want to load. This test data is schema compliant. Again,
we can read all constraints from the database catalogue. Most of
them are easy to deal with: primary key, foreign key, not null, and
unique constraints. However, check constraints are a challenge
because they can contain arbitrary conditions.
We can achieve the two previous compliance levels relying only
on the database catalogue. The following two compliance levels

need more information. If
we look at table
T_FINSTATEMENT,
obviously, the two columns
ASSETS and
LIABILITIES should be
the same. If not, procedure
P_VALIDATE_FS rejects
the financial statement.
This is an example of
dependencies between
attributes enforced by the
application and not
reflected by constraints.
Certainly, such
dependencies can also exist
between tables—that is,
one table with financial
statements and a table with
profit and loss information.
If the DBAP test data does
not reflect such
dependencies, the
application might process
data for which it is not
specified. As a result, false

Presentation
Layer

T_FINSTATEMENT

ID DATEFS ASSETS LIABILITIES EBIT RATING
NUMBER DATE NUMBER NUMBER NUMBER NUMBER

420015 31.10.2008 370‘500 370‘500 -20‘000 3
420015 31.10.2007 440‘250 440‘250 30‘700 7

T_PARAMETRIZATION

PARAM_ITEM VALUE
LIMIT_APPROVAL_2 1‘000‘000
LIMIT_APPROVAL_3 20‘000‘000

BANK_NAME NYC Bank

T_CUSTOMER

ID NAME CORPORATION
NUMBER VARCHAR2(100) BOOLEAN

420010 Abott Ltd. Yes
537291 Carla Co. Yes

T_TRANSLATION

ITEM ENGLISH GERMAN
1001 Assets Aktiva
4702 Date Datum

Business
Logic Layer

Input Mask: Financial Statement NYC BANK

Company: Abott Ltd.

Date:

EBIT:
31.12.2008

932‘000

5‘732‘000

PROCEDURE P_CALC_RATINGS
FOR ALL fs IN T_FINSTATEMENT WITH RATING IS NULL

RATING:=CALC_RATING_CORP(…);

PROCEDURE P_VALIDATE_FS (fs OF fs_type)
IF(fs.ASSETS=fs.LIABILITIES) THEN P_STORE_FS(fs); ELSE RAISE EXCEPTION; END IF;

SAVE

CANCEL

APPROVE

REJECT

CANCEL

PROCEDURE P_STORE_FS(fs OF fs_type)
INSERT fs INTO T_FINSTATEMENT

Database Layer

INSERT …
VALUES …

INSERT …
VALUES …

??????Test Data
Provisioning
Approaches

Assets:

Liabilities: 5‘732‘000

Input Mask: Financial Statement NYC BANK

Company: Abott Ltd.

Date:

EBIT:
31.12.2008

932‘000

5‘732‘000Assets:

Liabilities: 5‘732‘000

???

Figure 1: Sample Application & Provisioning Approaches

Compli-
ance Levels

Informa-
tion
Needs

Generated
= Loaded
Data

False
Positives

Intended
Path
Executed

Type
Compliant Schema Not

guaranteed Yes Not
guaranteed

Schema
Compliant Schema Yes Yes Not

guaranteed

Application
Compliance

Schema &
application
logic

Yes No Not
guaranteed

Path
Compliance

Schema &
application
logic & path

Yes No Yes

Table 1: Compliance Levels and their Characteristics

positives can appear. Only when test data could be the result of
“normal” GUI input and data processing, no false positives
appear. Then, the test data is application compliant.
Still, test data can become better. Let us assume we test the credit
rating functionality for corporations in procedure
P_CALC_RATINGS. This test case requires a financial statement
of a corporation in table T_FINSTATEMENT; otherwise, we
cannot test the functionality. If the DBAP test data is suitable for
a test case, it is path compliant. Path compliance always refers
always to a test case and the corresponding execution path of the
application. Table 1 compiles the information for all four
compliance levels.

4. Test Data Provisioning Methods
This section discusses the most popular methods for providing
DBAP test data. We distinguish how to gain test data and how to
get test data into the DBAP. There are three options for the how
aspect: copying live data, designing data manually, or generating
test data automatically. There are two options for the into aspect:
Option one is the normal way, via GUI. The business logic layer
manages how to write the GUI input into database tables. The
second option is writing the data directly into database tables.
There are six ways to combine the how and the into. There are
out-of-the-box solutions for four of them (Table 2).
The idea of manual test data is that a tester (or developer)
analyzes the application. She designs test cases based on the
specification (black-box testing) or on the application structure
(white-box testing). Next, she must get the data into the DBAP.
She can insert the test data (e.g., financial statements) using the
GUI (GUI Input, Figure 1,) or via other interfaces. Or she can
use capture and replay tools such as Selenium [14]. They capture
the keyboard and mouse and mouse input and replay the input
every time the DBAP is installed new again (). Writing
INSERT scripts (e.g., in SQL) is option three. INSERT statements
write data directly into database tables ().

Test data generators () generate synthetic test data
automatically and write the data directly into DBAP tables. The
snapshot approach () relies on live system data; it copies the
database of a live system and loads the data into the database of a
test system. Testers can use systems such as Oracle’s data pump
functionality [15]. The data generators and the snapshot
approaches both work directly on the database tables. To the best
of our knowledge, there are no commercial tools on the market
that support data generation or snapshots with data input via GUI.

5. A Methodology for a Choosing a
Provisioning Method
Commercial projects take quality, quality assurance, and test data
quality seriously. But costs are relevant, too. Costs can be divided
into one-time set-up costs and reoccurring maintenance costs. The
decision for a provisioning method means estimating quality and
costs for the different provisioning methods and choosing the one
with the most adequate cost-quality profile.1 Such a methodology
requires first analyzing the different impact factors; impact factors
can be either DBAP specific or context specific. DBAP factors
reflect the domain and concrete requirements of the application
such as how often the GUI changes. Context factors address
organizational issues such as whether power users are responsible
for the test data. Understanding these impact factors is the first
step (Step 1, “Analysis,” Figure 2).
Step 2, “Evaluation,” is understanding how the impact factors
relate to costs and quality for the different provisioning methods.
A single formula returning a triple <quality, set-up costs,
maintenance costs> for each method would simplify the decision
process. However, commercial projects are more complex: There
are hard constraints (such as privacy needs for banks) or the
information is more vague than three numbers express. A
methodology should never feign an exactness that does not exist

1 Certainly, bad test data quality can also be a cost-driver, such as

in case of false positives. Software engineers have to analyze
them until they figure out that it is a false-positive and not a
“real” failure.

Figure 2: DBAP Test Data Provisioning Methodology
SuC: Set-up Costs, MC: Maintenance Costs, C&Q: Coverage
Quality

 Manual Generated Live-Data

Regular (GUI/
Interface)

GUI Input,
Capture &
Replay

No out-of-
the-box
solution

No out-of-
the-box
solution

DB direct INSERT
Scripts

Data
Generation
Tools

DB
Snapshots

Table 2: Data Provisioning Methods

in reality. Therefore, we concentrate on qualitative statements
() summed up in a guideline matrix. This is sufficient,
because project managers can deal with vagueness. Finally, in
Step 3, “Decision,” one has to choose a concrete method.
The impact factors of the analysis step fall into two groups:
Context impact factors and DBAP impact factors. DBAP impact
factors address the specifics of a DBAP and its evolution over
time. The first aspect of this group is the test data compliance
level. The project has to determine which level it needs and what
the differences between the levels are; that is, whether in a
specific case schema compliant data is also application compliant.
The second impact factor is whether there are many or infrequent
(execution) paths. In other words, how likely is it that randomly
selected data is sufficient for testing all paths, including the ones
needing specific data constellations—or do we need some extra
effort or a different data set for each execution path? Test data
quantity concentrates on how much data we need for test cases.
Are two rows sufficient or do we need thousands? The firmness
factors relates to the maintenance of test cases. GUI/Interface
firmness is about how often and how much the GUI or other
external interfaces change from one DBAP version to the next.
Data model firmness concentrates on how often and how much
the data model in the database changes.
Contexts impact factors capture the influence from outside the
project. Here, the first factor is the role of the data responsible.
Testers have different backgrounds. Software engineers know
development tools well. Test engineers have good testing
methodology know-how. The effort for installing an environment
(set-up costs) and keeping it up and the test cases à jour
(maintenance costs) are further impact factors. Privacy is a
concern e.g. for banks or hospitals. If it is a concern, it is mostly a
killer criterion: No bank wants customer data finding the way into
newspapers via leaks in the test process. Finally, there is the
aspect of environment complexity. The question is whether the
DBAP is a stand-alone application or connected with many
satellite systems. In the latter case, one has to analyze, for
example, whether the DBAP requires test data fitting to the
satellite systems or whether loading test data into the satellite
systems is an option.

6. Guideline Matrix
Our methodology should support commercial projects when
choosing a DBAP test data provisioning method. The outcome of
applying this methodology to a concrete project is a decision for
using one method. Once we have analyzed all impact factors, our
guideline matrix comes into play (Table 3). It is a qualitative
analysis of which impact factors favor which method. The rows of
the matrix represent the methods, and the columns are the impact
factors. The arrows in the cells are qualitative characterizations of
how favorable the impact factor is for choosing this method. In
the following, we elaborate the matrix. Our discussion is
structured according to the methods. In the end of this section, we
illustrate the usage of the guideline matrix with a small example.

6.1 “Hand-crafted” Test Data
Hand-crafted test data is data a person designs after analyzing the
DBAP and the testing needs. The data can be inserted manually
via the GUI, using capture & replay technologies, or by coding
INSERT scripts (Table 3, , ,). If the tester designs the data

correctly, it is path compliant. If the tester makes mistakes, the
data is at least application compliant if it is inserted via GUI. In
case of INSERT scripts with mistakes, the data might be only
type compliant (before the load) or schema compliant (if we look
at the loaded data). If there are many paths to be considered,
hand-crafted data becomes expensive. Further, the tester has to be
aware of all the paths in which he is interested. This might lead to
problems in case of infrequent paths. However, hand-crafted data
is efficient for constructing test data for a limited number of
workflows.
Hand-crafting test data becomes too expensive when many tables
have to be filled with many rows (mass test data). Privacy is no
concern, because the method does not use live system data.
Writing SQL scripts is easy for software developers, and it is
acceptable for test engineers. However, it is not suitable for power
users. Often, the latter—or even the latter two—do not have the
necessary tools installed and can miss access rights and database
rights.
We see the typical influence of GUI and internal data model
changes: Human testers deal with changes easily (). If we insert
the data via the GUI automatically using capture & replay, there
are adoption costs in case of GUI changes. Due to the GUI input,
internal data model changes are irrelevant (). In contrast, data
written directly into the database by SQL insert statements are not
affected by GUI changes but by data model changes ().The set-
up costs are mainly the efforts for specifying database test data
for the different test cases. The set-up costs for the tools (and
archiving the captured inputs) are added to that for the capture &
replay method. In case of the manual GUI input, the follow-up
costs are tremendous; one has to input the test data every time a
new testing environment is set up. The capture & replay method
is also relatively expensive due to the need to maintain the
captured inputs and adapt it to changes. INSERT scripts are still
not the least expensive option but are more stable and easier to
use. Thus, all three methods that rely on hand-crafted data have
similar but nevertheless slightly different characteristics.

6.2 Generators for Synthetic Test Data
Test data generators (Table 3,) promise to reduce the manual
effort for test data design. Many commercial tools are on the
market, e.g. the Datanamic DB Data Generator [16]. Most are
inexpensive with single-user licenses under $1,000. The process
of choosing a tool is more expensive than the license itself. Tool
usage typically consists of three steps: First, the tester chooses the
tables for which she needs data. In the second step, she specifies
how to generate the values for each column. This is a particular
strength of the commercial tools. They come with predefined lists
(ZIP codes for different countries, names, etc.), allow the user to
create (and use) its own lists, or reuse values of other tables. They
also provide random generators for simple numeric values or
complex strings. The tools usually deal with not null, unique,
primary, and foreign key constraints. Check constraints are hardly
ever considered. In Step 3, the tools generate and load the data.
Many of them determine the optimal insertion order needed due
to foreign keys in this phase. However, cyclic dependencies are
problematic. If the database schema has check constraints, the
data is only type compliant. Type compliance implies that some
rows might be rejected. A tester specifying that he wants 50 rows
for a table might get only 45. If a tool continues generating rows

until 50 rows are loaded, a (nearly) infinite number of tries might
be needed for difficult constraints.
If the tester wants application or path compliant data, he must
specify carefully how to generate the values for each column. The
tester must consider intra-table and inter-table dependencies not
covered by constraints. If the specification is not 100% correct,
the data is not application compliant. The result might be false
positives. On the
positive side, the tools
generate a massive
number of different
rows quickly. If many
rows are generated,
and the test considers
all data in the tables
(batch-processing),
even paths are covered
nobody is aware of. If
one needs data fitting a
specific constellation
(such as a real estate
company with a
balance sheet total of
$10 million), it takes
effort to identify the
data. Finally,
generated data does
not raise privacy
concerns even if
testing is done
offshore.
If—and only if! —the false positive challenge is solved and
application or path compliant data is derived, a project benefits
from the advantages of the tools. They are easy to use. Testers
and developers can learn to use them efficiently in less than an
hour. However, some understanding of the data model is needed,
which can be a hurdle for testers and is unacceptable for power
users. GUI changes have no impact. The tools deal easily with
schema changes. The latter holds true as long as few inter-table or
intra-table dependencies exist that are not reflected, for example,
by foreign keys. Lastly, the tools have low set-up and
maintenance costs for test data specifications.

6.3 Life System Snapshots
From the moment the first user works with the DBAP, its
database tables fill up with data. The data originates from
“normal” usage with the DBAP’s GUI. Thus, the data is
application compliant.2 Even better, the database contains (path-
compliant) data for all standard and exceptional situations of
“real” usage. No tester has to be aware of them. This is interesting
for testing batch processes such as the rating calculation
procedure P_CALC_RATINGS. If one tests specific workflows,
suitable rows must be identified first in the large data set. A

2 It might even be too much data, e.g. in case of billing systems of

telecommunication companies or data warehousing. Thus, one
has to shrink the data without loosing coverage. Suárez-Cabal,
et al. [10] present ground-breaking ideas for doing this
automatically. In practice, it is currently a manual step.

particular strength of life system snapshots is test data
provisioning for complex systems such as ERP systems. They
have hundreds or thousands of tables. Only snapshots provide
sensible data with limited effort. However, from a quality point of
view, there are two aspects to consider: the version and the
privacy challenge.
Privacy is a serious concern for banks or hospitals. There are

academic approaches
(e.g., [17] and [18]) or
commercial tools (e.g.
Datamaker Data Mask
[19]) addressing the
privacy challenge.
However, often one
uses the term
“anonymization”
though it is more a
kind of “veiling” (see
[20] for example).
Anonymization
guarantees that nobody
can figure out to whom
the data belongs, for
example, to which
company a rating
belongs. Veiling means
that it is not obvious to
whom the data
belongs. Veiling is
often sufficient for
internal testing. The
first one is a

prerequisite for off-shore tests with bank data. In contrast to
veiling, anonymization is difficult or even impossible. Assume
that one replaces the names in table T_CUSTOMER with a
random string. This looks like anonymization. In fact, it is veiling.
A financial statement is a fingerprint for a company. But if we
change the financial statement to achieve anonymization, we have
to recalculate the ratings. Otherwise, the data is inconsistent and
could never appear this way in the application. The data would
not be application compliant and might cause false positives. As a
consequence, one should analyze carefully whether one needs
veiling or anonymization and what one really gets.
The version challenge addresses that snapshot data comes from a
DBAP version in use. When users work with version 1.0, we get
version 1.0 data. If we want to reuse version 1.0 data for version
1.1 tests, we must upgrade the data. This looks like extra costs but
is usually free. A vendor must develop such upgrade functionality
for its customers. A bank never accepts that it looses the rating
history when upgrading to version 1.1 of a credit rating
application. The challenge is developing the upgrade early
enough. False positives appear if the upgrade mechanism is not
correct. Then, the data becomes corrupt. The DBAP might crash.
The important point is that a false positive is a false positive only
regarding testing the new release. It is a “real” failure of the
upgrade process. It has to be solved anyway.
Life system snapshots are easy to use for developers, especially if
they have database experience. Testers might not be too familiar
with database import and export tools like Oracle’s data pump.
They need more training and support in unforeseen situations.

 Quality Costs

Te
st

 D
at

a
C

om
pl

ia
nc

e
Le

ve
l

Many/
Infre-
quent
Paths

M
as

s T
es

t D
at

a

Pr
iv

ac
y

Suitability Firm-
ness

Manual
Effort

Methods B
at

ch

W
or

kf
lo

w

SW
 E

ng
in

ee
rs

Te
st

er
s

Po
w

er
 U

se
r

G
U

I/
In

te
rf

ac
e

D
at

a
M

od
el

Se
t-U

p

M
ai

nt
en

an
ce

Manual
GUI Input a p

Capture &
Replay a p

INSERT
Scripts

t/s
p

Data
Generator

t
(p)

Snapshot a p
*)

Table 3: Guideline Matrix for choosing a Provisioning Method
[*) with respect to old release]

Snapshots are not feasible for power users. GUI changes are
irrelevant because snapshots work on the database level. Data
model changes are also irrelevant, because the vendor need
anyway upgrade procedures coping the changes. Finally, the set-
up and maintenance costs for such a solution are low.

6.4 Example
We conclude this section with applying the results of the
discussion (summarized in Table 3) to our sample credit rating
sample application. We make some further assumptions about the
application. First, the data model and GUI are stable. Second,
testing is done offshore. Third, we test due to new rating business
logic: a new workflow and modified calculations. The first
column of Table 3 lists the provisioning methods: “Manual GUI
Input,” “Capture & Replay,” “INSERT Scripts,” “Data
Generator,” and “Snapshot.” We want to test workflows, so we
need path compliant data. Column “Quality” indicates that “Data
Generator” produces (in the best case) schema compliant data.
Thus, we exclude this method. It is a banking application tested
offshore and privacy is a concern, so column “Privacy” indicates
that “Snapshots” is also not an option. Therefore, three options
remain: “Manual GUI Input,” “Capture & Replay,” and “INSERT
Scripts.” Deciding whether “Manual GUI Input” or “Capture &
Replay” is better depends on the GUI stiffness and the set-up
costs for “Capture & Replay.” Our assumption was that the GUI
does not change often; thus, “Capture & Replay” is better than
“Manual GUI Input.” Now, two options are left: “Capture &
Replay” and “INSERT scripts.” Our final decision would depend
on the knowledge of the tester: How familiar is she with the
internal data model and the validations?

7. Summary and Outlook
One of the basic problems of testing DBAPs is the need for
DBAP test data. The main methods are easy to list: designing test
data manually and (a) inserting it manually via GUI, (b) capture
and replay a manual insertion via GUI, or (c) code an INSERT
script writing data straight into database tables. Other methods are
generators for synthetic test data or using database snapshots.
Many factors decide which method is the most suitable. The
challenge is balancing quality and costs.
Test data compliance levels—type, schema, application, and path
compliance—allow assigning test data a concrete quality level.
The cost estimation is more complex. We contribute a
compilation of the main influence factors. The factors fall into
two groups: DBAP-specific factors (e.g., firmness of GUIs and
internal data model) and context factors. Sample context factors
are privacy needs or whether power users or testers are
responsible for test data. To make the abstract decision process
with the various impact factors useful for commercial projects, we
introduced the guideline matrix. It concentrates on the most
relevant influence factors and provides a qualitative statement of
which factors favor which provisioning method.
However, our methodology does by no means address all DBAP
test data challenges. Many questions remain. One example is to
move on from a qualitative guideline matrix to a quantitative
matrix. Obviously, this would require broad empirical research. A
second open challenge comes when broadening the view. This
paper deals with database test data for one DBAP. The application

landscapes in companies consist of hundreds of DBAPs, and
workflows often span many of them. Therefore, we also need
solutions for consist test data for systems with many DBAPs.
Obviously, this is a big challenge.

Acknowledgements: The author would like to thank Michael
Mlivoncic for the valuable discussions.

8. REFERENCES
[1] http://www.hibernate.org/
[2] Zhu, H., Hall, P., May, J.: Software Unit Test Coverage and

Adequacy, ACM Computing Surveys, Vol. 29, No. 4, 1997
[3] Perry, W. E.: Effective Methods for Software Testing, 3rd

edition, Wiley Publishing, Indianapolis, IN, 2006
[4] Willmor, D. and Embury, S.: An Intensional Approach to

the Specification of Test Cases for Database Systems,
ICSE’06, Shanghai, China, May 20-28, 2006

[5] Deng, Y., Frankl, P. G., Chays, D.: Testing database
transactions with AGENDA. ICSE’05: 15-21 May, 2005, St
Louis, MO

[6] Dai, Zh., Chen, M.-H.: Automatic Test Generation for
Database-Driven Applications, SEKE'07, July 9-11, 2007,
Boston, MA

[7] Houkjær, K., Torp, K., Wind, R.: Simple and realistic data
generation, VLDB’06, September 12-15, 2006, Seoul, Korea

[8] Binning, C., et al.: MultiRQP – Generating Test Databases
for the Functional Testing of OLTP Applications,
DBTest’08, Vancouver, Canada, June 13, 2008

[9] Binning, C., Kossmann, D., Lo, E.: Towards Automatic Test
Database Generation, IEEE Bulletin on Data Engineering,
Vol. 31(1), 2008

[10] Suárez-Cabal, M., Tuya, J.: Using an SQL Coverage
Measurement for Testing Database Applications,
SIGSOFT’04/FSE-12, Oct. 31–Nov. 6, 2004, Newport
Beach, CA

[11] Kapfhammer, G., Soffa, M.: A Family of Test Adequacy
Criteria for Database-Driven Applications, ESEC/FSE’03,
September 1–5, 2003, Helsinki, Finland

[12] Haller, K.: White-Box Testing for Database-driven
Applications: A Requirements Analysis, DBTest'09,
Providence, RI, 29.6.2009

[13] Haller, K.: Test Data Provisioning for Database-Driven
Applications, BNCOD’10, Dundee, UK, June 29 – July 1,
2010

[14] Selenium. http://seleniumhq.org/
[15] Data Pump in Oracle® Database 11g: Foundation for Ultra

High-Speed Data Movement Utilities, Oracle, 2009
[16] datanamic DB Data Generator,

http://www.datanamic.com/datagenerator/index.html
[17] Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving

Anonymization of Set-valued Data, VLDB '08, August 23-
28, 2008, Auckland, New Zealand

[18] Zhong, Sh., Yang, Zh., Wright, R.: Privacy-Enhancing k-
Anonymization of Customer Data, PODS 2005, June 13-15,
Baltimore, MD

[19] Datamaker Data Mask, www.grid-tools.com
[20] Anderson, N.: "Anonymized" data really isn't—and here's

why not, Ars Technica, www.arstechnica.com, 8.9.2009

