
P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 63–78, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards the Industrialization of Data Migration:
Concepts and Patterns for Standard Software

Implementation Projects

Klaus Haller

COMIT AG, Pflanzschulstr. 7, CH-8004 Zürich, Switzerland
klaus.haller@comit.ch

Abstract. When a bank replaces its core-banking information system, the bank
must migrate data like accounts from the old into the new system. Migrating data
is necessary but not a catalyst for new business opportunities. The consequence is
cost pressure to be addressed by an efficient software development process
together with an industrialization of the development. Industrialization requires
defining the deliverables. Therefore, our data migration architecture extends the
ETL process by migration objectives to be reached in each step. Industrialization
also means standardizing the implementation, e.g. with patterns. We present data
migration patterns describing the typical transformations found in the data
migration application domain. Finally, testing is an important issue because test-
case based testing cannot guarantee that not a single customer gets lost.
Reconciliation can do so by checking whether each object in the old and new
system has a counterpart in the other system.

Keywords: Data Migration, Patterns, ETL, Standard Software, ERP.

1 Motivation

In the last years, many Swiss banks replaced old, less-flexible and expensive-to-
maintain core-banking systems with new ones like Avaloq or Finnova [1]. Replacing
the systems requires not only setting up and customizing the new system but also
migrating data like customers or accounts into the new system.1 Data migration is
necessary, but only performed once. Furthermore, it is not an enabler for business
processes. Strict budgets are the consequence requiring an industrialization of the data
migration development. Industrialization is often narrowed down to having a software
development process like CMMI [2]. But industrialization also has a technical aspect,
i.e. standardizing artifacts to be developed and concepts for constructing them.

1 To prevent confusion we want to point out the difference between database migration and data

migration. In data migration, application-related artefacts like triggers must not be migrated.
Instead, data might have to be transformed to fit into the new system’s database schema. In
contrast, migrating a database (e.g. from Microsoft SQL server to Oracle) demands not only
to copy the data but also all application-related artefacts (triggers, constraints etc.).

64 K. Haller

Typical examples are patters [3] or the three-tier-architecture for data-intensive
applications [4]. Our vision is providing concepts allowing the industrialization of our
application domain data migration.

The concepts in this paper reflect our experience with data migration as part of
several Avaloq core-banking system implementation projects in Swiss banks. They
are an outcome of COMIT’s industrialization efforts for core-banking system
implementation projects, the LeanStream initiative [5]. Up to now, our work on data
migration concentrated on a migration infrastructure architecture [6] and on project
management issues [7]. This paper complements our previous work by focusing on
the industrialization of the development by equipping practitioners with blueprints for
their implementations. The core concept is the ETL (extract, transform, load) process
known from data warehousing [8]. We assign data migration specific objectives to
each step. If different developers develop code (or use ETL tools) for the steps, the
results might look completely different. However, we observed only very few
different underlying patterns, which we compile in this paper. Developers should look
at a migration problem in a project and remember immediately the right pattern(s) he
or she has to adopt and use. By focusing on the data structure before and after the
usage of the pattern, we characterize the patterns in a universally applicable way.

We organize the rest of our paper as following: Section 2 discusses related work
followed by a presentation of our general migration architecture (Section 3). Section 4
explains the most important implementation techniques (language constructs and
tools). Sections 5-7 describe the patterns for the different data migration steps, i.e.
extract the data from the old system, transform it with respect to the new schema, and,
finally, load the data into the new system. Detecting failures, especially lost data, is a
major issue for data migration. We devote Section 8 to this challenge.

2 Related Work

Data migration is a practitioners’ topic, i.e. only very few publications exist.
However, the pioneering work comes from academia: the butterfly approach [9]. The
butterfly approach provides a phase model with five steps: (i) analysis, (ii)
development of the data mappings, (iii) building up a sample data set in the target
system, (iv) migration of the system components to the target system without any
data, and (v) step-by-step data migration. The key architectural element is a
temporary message queue. Messages in the message queue are either “waiting” or
“processed”. The message queue has two operating modes. In the first mode, it
processes messages in the state “waiting” respectively newly arriving messages from
the old system for the migration. Processed messages switch their state to “processed”
but do not leave the message queue yet. In the second mode, “processed” messages
are released into the target system whereas newly arriving messages are stored in the
queue in the mode “waiting”. The message queue switches regularly between the two
modes. The assumption is that the number of messages in the queue gets smaller and
smaller.

The butterfly architecture suits well for batch processing with one or just a few
message queues. The more interactive the processing and the more systems are
coupled, the more difficult and expensive the butterfly approach becomes.

 Towards the Industrialization of Data Migration 65

The most extensive work on data migration project management is a book written
by Morris [10]. The author focuses mainly on project managers having to set-up and
organize a migration project for the first time. He also provides a high-level overview
about the most important technical issues. An Endava white paper has the same focus
[11]. Shorter articles (e.g. [12, 13]) target the same audience, but only discuss very
basic problems and pitfalls.

Tool descriptions focus on how to use (often target system specific) tools for data
migration. Examples are a book about SAP’s data migration tools [14] or explanations
of how to migrate to a new product version or how to get away from a competitor’s
product [15, 16]. Furthermore, Carreira and Galhardas describe a specific language
designed especially for data migration purposes [17].

Broadening the view, also data warehousing respectively the ETL process
mentioned above are related [8]. Schema mapping [18], an area were tremendous
research took place, is related due to the goal of mapping schemata with their
attributes. Though we would have been more than happy to use (semi-)automatic
techniques to reduce costs, the focus is too different. Companies buy new software to
get additional functionality. This requires transforming and enriching the data being
migrated from the old to the new system, which is difficult to automate.

3 Generic Migration Architecture

Each data migration project has to decide whether to follow the source-push or the
target-pull paradigm [11]. Target-pull means migrating only data necessary for the
target system, whereas source-push migrates all data of the old system into the new
one. On a first glance, the latter one sounds appealing. One cannot forget any data
because everything is in the target system. However, it is highly uneconomical.
Usually only around 10% of the attributes have to be migrated. Users and application
management understand and know these attributes well. Other attributes require more
effort and an in-depth analysis of the application. Many attributes are there for pure
technical reasons or to store intermediate results. So if the application is not very
simple, it is too expensive to analyze every attribute. Target-pull, i.e. hunting (and
migrating) attributes of the old system needed by the new one, is the option of choice.
But certainly, it makes sense to have a copy of the old system in a read-only database
before the old system is switched off.

Load Extract Transform

Load

Semantic Migration Verification Test Cases

Technical Migration Verification / Reconciliation Error Log& Statistics

M
ig

ra
tio

n
M

ig
ra

tio
n

P
ro

ce
ss

V

er
ifi

ca
tio

n

Data Migration Process Control Component

F
iltering

R
estruc-

turing
&

M
apping

C
opy/D

e
-

coupling

Download
Data

Filtered
Data

Upload
Data

New
Platform

Old
Platform

Fig. 1. Generic Migration Architecture

66 K. Haller

The centre of our data migration architecture in Figure 1 is an ETL process. The
extract step aims firstly on decoupling the data migration project and the old system.
It copies the data to a different server named download area. Thus, the project cannot
affect the daily business of the bank. Secondly, the extract step identifies the data to
be migrated and filters everything else. Customers, for example, not doing any
business with the bank for years might not be of interest. The filtering is the one and
only point where the decision is made whether an object is migrated or not. If an
object passes this border, it must reach the target systems.

Next, the filtered data runs through the transformation step. If the database
schemata of the old and new system differ, the data must be restructured in the
transformation step. If the domain values are different (e.g. one system stores
the currency as “USD” whereas the second one used the full name “US DOLLAR”),
the transformation step accomplishes the mapping. Finally, after the transformation
step, the data is loaded into the new system.

The ETL process illustrates the migration process of a single object type like
customers or accounts. However, core-banking systems have many object types, i.e.
there is one ETL process for each object type. Furthermore, often additional tasks
must be performed like calculating statistics and histograms for the optimizer. Many
processes and additional tasks, possibly to be performed in a certain order, make it too
risky for a pure manual orchestration. Therefore, a data migration process control
component stores the execution order. It does not necessarily perform the complete
migration without manual intervention, but might automate certain steps.

After all data has been migrated, one verifies that the migrated data is correct and
complete based on two complementary migration verification techniques. Test cases
are selected sample objects, e.g. addresses and accounts of five typical and five very
important customers. A tester checks manually all attributes like owner, IBAN,
interest rate etc. in the old and in the new system for these objects (semantically
migration verification). The second technique, reconciliation, is an automatic
technical verification. It checks whether all objects have been migrated, but not
whether all attributes are correct. It allows detecting e.g. five missing accounts out of
ten millions.

4 Programming Paradigms

The generic data migration architecture assigns goals to each step. Fulfilling the
goals can be done with different programming paradigms. The choice of the
programming paradigm and the tool respectively programming language depends
on each project’s situation. The source and target systems’ databases are relevant,
knowledge in the project, availability of tools, the project duration etc. Therefore,
we focus on the ideas of the three main paradigms (row-based implementation, set-
oriented implementation, ETL tool). We discuss their different advantages on a
qualitative level and provide concrete examples using PL/SQL respectively Oracle
Warehouse Builder.

In the examples, the source schema has one table for natural persons
(OLD_PERSONS) and one for juristic persons (OLD_COMPANIES). The target

 Towards the Industrialization of Data Migration 67

schema consists of one table CUSTOMERS. All rows of the natural and juristic
persons tables are migrated if they represent customers (TYPE='Customer'). To
illustrate transformations, natural persons having a Ph.D. (attribute PHD='+') get a
“Dr.“ prefix to their names in the target table.

1 DECLARE
2 CURSOR c_old_persons
3 IS SELECT name, internal_id, phd FROM old_persons WHERE ctype = 'CUSTOMER';
4 CURSOR c_old_companies
5 IS SELECT name, internal_id FROM old_companies WHERE ctype = 'CUSTOMER';
6 newname varchar2(100);
7 BEGIN
8 FOR cp IN c_old_persons
9 LOOP
10 IF (cp.phd = '+') THEN newname := 'Dr. ' || cp.NAME;
11 ELSE newname:=cp.name; END IF;
12 INSERT INTO customers (NAME, internal_id)

 VALUES (newname, cp.internal_id);
13 END LOOP;
14 FOR cc IN c_old_companies
15 LOOP
16 INSERT INTO customers (NAME, internal_id)

 VALUES (cc.NAME, cc.internal_id);
17 END LOOP;
18 COMMIT;
19 END;

Example 1: Row-oriented Implementation Paradigm using PL/SQL

1 BEGIN

2 INSERT INTO customers(name, internal_id)

3 SELECT CASE WHEN phd='+' THEN 'Dr. '||name ELSE name END, internal_id

4 FROM old_persons WHERE ctype='CUSTOMER'

5 UNION

6 SELECT name, internal_id

7 FROM old_companies WHERE ctype='CUSTOMER';

8 COMMIT;

9 END;

Example 2: Set-oriented Implementation Paradigm using PL/SQL

Example 3: ETL-Tool-based Implementation using Oracle Warehouse Builder

68 K. Haller

4.1 The Row-Oriented Implementation Paradigm

The row-oriented implementation paradigm specifies the migration in an imperative
way using e.g. Java with JDBC or PL/SQL scripts. There is one script for each object
type (addresses, persons etc.). The key idea is that each script has a loop enclosing the
mapping (Example 1, lines 8-13 and 14-17). Inside the loop, a cursor accesses and
processes one row per iteration of the loop. The actual implementation of the
migration deals only with one source table row per iteration (lines 10-12 and line 16).
The advantage of a row-based implementation is, firstly, that everyone familiar with
imperative programming understands the concept. Secondly, the concept hides data-
parallelism. Using cursors means that one does not have to consider the whole table at
once but only the recent row. The ultimate benefit of having programming tasks with
a lower complexity is that staffing the project becomes easier. However, some
optimization possibilities are lost which a database optimizer might have otherwise.

4.2 The Set-Oriented Implementation Paradigm

The set-oriented implementation paradigm also uses an imperative programming
model. Instead of hiding data-parallelism using cursors, it uses set-oriented SQL-
statements like SELECT. In our example, all relevant data of table OLD_PERSONS
respectively of table OLD_COMPANIES is selected and transformed in one statement
(Example 2, lines 3-4 and 6-7). Complex transformations are more difficult to be
implemented in a single step. Then, it might be wise implementing the transformation
in more steps and storing intermediate results in temporary tables. The highly
compact implementation allows database optimizers to execute the code more
efficiently than row-oriented implementations. The disadvantage is the higher level of
abstraction requiring programmers feeling comfortable with data set-oriented
thinking.

4.3 ETL-Tool-Based Implementation Technique

ETL-tools often provide a visual programming language for defining data-flows. Data
flows have one or more data sources. In Example 3 on the left, the tables
OLD_COMPANIES and OLD_PERSONS are such sources. A data sink collects the
result (table CUSTOMERS). Between the data sources and the data sink(s) operators
can be placed for manipulating the data. In our example, the operators
FILTER_PERSONS and FILTER_COMANIES filter objects not being customers.
The operator EXPRESSION changes the names of persons depending on the PHD
attribute. The companies thread and the customers thread come together at the
UNION set operation implementing a UNION.

ETL tools provide a visual way of programming. The systems are very robust.
However, complex migrations might require large data-flows which might be difficult
to understand. The main obstacle against ETL tools is that learning them might take a
long time if the knowledge does not already exist.

 Towards the Industrialization of Data Migration 69

5 Extract Step Patterns

The extract step fulfils two goals. It downloads data from the productive system in the
first sub-step. Afterwards, in the second sub-step, it filters the data. The purpose of
the download sub-step is decoupling. A data migration project works on a separate
project server, such that the project does not interfere with the daily operations on the
old system. The decoupling requires downloading a copy of all possibly needed tables
(e.g. customers, customer accounts, and banks in the example in Figure 2, but not
account bookings). Generally, it is not wise to be too selective with the tables to be
downloaded. Firstly, downloading a missing table later might only be allowed during
dedicated service windows of the old system. Secondly, the data might become
inconsistent. Assume one downloads all customer accounts on May 2nd and account
balances on May 15th. If accounts are opened or closed between May 2nd and May
15th, there are suddenly accounts without account balances or vice versa. Such
inconsistencies result in errors or testing problems. Thus, one missing table might
require downloading a large number of tables to ensure consistency.

The filtering sub-step is conceptually important for the migration verification (see
Section 8). Objects passing the filter must make it into the target system. This rule
must be enforced strictly. Otherwise, it becomes difficult to decide whether an object
was excluded on purpose or was forgotten. Such questions are especially difficult to
answer if they arise weeks after the implementation.

The filtering allows excluding superfluous objects, e.g. customers who died ten
years ago. Filtering also excludes objects to be migrated manually. Manual migration
is more economical if there are only a few objects of a certain type (usually less then
100-1000). Also, some objects might already be in the target system. A core-banking
system might e.g. already store all stock exchanges in a table. However, it is
important to understand that no transformation takes place in the filtering step. But
certainly, the object model in the old and new system might differ resulting in
splitting object sets. Figure 2 illustrates the aspect. The old system stores all banks in
one table. The new one distinguishes between the roles of banks. There are banks the
bank does business with directly, e.g. because the bank has nostro accounts with
them. Other banks are for reference purposes only, e.g. banks in Central Asia to
which money could be sent by SWIFT. Thus, the banks of the old system are divided
during the filtering into “business partner” banks and “reference data” banks.

Old Platform Download Data Filtered Data

Data Migration Project ServerProduction Server

Download Filtering

Reference only
Direct interaction

Banks

Reference only
Direct interaction

Banks

Customer Account Bookings

Customer Accounts

Customers

Banks
Customers

Business Partners

Banks
Customers

Business Partners

Customer Accounts

Accounts

Customer Accounts

Accounts

Banks
Reference Data

Banks
Reference Data

Reference only
Direct interaction

Banks

Reference only
Direct interaction

Banks

Customer Accounts

Customers
Business
Partners
Script

Accounts
Script

Bank
References
Script

Fig. 2. Extract Step

70 K. Haller

The download sub-step copies tables and therefore does not need special patterns
for the implementation. The filtering is more complex. In the following, we present
the three main filtering patterns mostly needed in projects. Our presentation relies on
the sample schema in Figure 3. The schema stores all accounts of the old system in
table T_ACCOUNT. Customer accounts (in contrast to internal accounts) refer to their
owner in table T_CUSTOMER. The third table T_INTERESTRATE stores the
accounts’ interest rates and how they changed over time. With the help of this sample
schema, the three patterns are introduced quickly.

• Attribute value based filtering. The pattern decides whether a row is selected
for each row independently of other rows or tables. One example is choosing all
accounts from table T_ACCOUNT with PRODUCT=’SAVINGS ACCOUNT’
(Result Set 1 in Figure 3).

• Selection table based filtering. The pattern decides whether a row is selected
based on information in a second table. The pattern determines a key for each of
the rows in table one. In the second table, the pattern looks for rows having a
matching key. Depending on the identified rows in the second table, the row of
the first table passes the filter. An example is choosing all rows from table
T_ACCOUNT having an owner with BRANCH_ID=10 stored in table
T_CUSTOMER or not having a customer as an owner (Result Set 2). It could be
implemented e.g. based on a join condition like:

SELECT a.*
FROM T_ACCOUNT a LEFT OUTER JOIN T_CUSTOMER c

ON a.OWNER_ID=c.CUSTOMER_ID
WHERE c.CUSTOMER_ID IS NULL OR c.BRANCH_ID=10

• Aggregation based filtering. Aggregation functions in SQL determine a value
based on information in several rows, e.g. the highest value or the average.
Similarly, aggregation based filtering decides whether a row is filtered based not
only on the information of the row itself. It considers also other rows of the same
table. A good example is choosing the latest interest rate for each account, i.e. the
currently valid one (Result Set 3). Table T_INTERESTRATE stores two interest
rates for account 1000765208, one valid from 6.8.2007, the other one from
1.1.2007. For choosing the actual valid interest rate, one must look at all interest
rates of account 1000765208. Thus, the filter chooses the interest rate valid from
6.8.2007 and to skip the one from 1.1.2007.

125669

105670

105668

BRANCH_IDCUSTOMER_IDT_CUSTOMER

125669

105670

105668

BRANCH_IDCUSTOMER_IDT_CUSTOMER

22INTERNAL ACCOUNT1000605751

5670SAVINGS ACCOUNT1000455444

5669CHECKING ACCOUNT1000405201

SAVINGS ACCOUNT

PRODUCT

5669

OWNER_ID

1000765208

ACCOUNT_IDT_ACCOUNT

22INTERNAL ACCOUNT1000605751

5670SAVINGS ACCOUNT1000455444

5669CHECKING ACCOUNT1000405201

SAVINGS ACCOUNT

PRODUCT

5669

OWNER_ID

1000765208

ACCOUNT_IDT_ACCOUNT

Result Set 1

Result Set 2

Result Set 3

0.5%1.1.20071000405201

0.5%1.1.20071000765208

5.8.2007

DATE

0.85%

INTREST_RATE

1000765208

FK_ACCOUNT_IDT_INTRESTRATE

0.5%1.1.20071000405201

0.5%1.1.20071000765208

5.8.2007

DATE

0.85%

INTREST_RATE

1000765208

FK_ACCOUNT_IDT_INTRESTRATE

Fig. 3. Sample Tables for Filtering Patterns

 Towards the Industrialization of Data Migration 71

6 Transformation Implementation Patterns

6.1 Pattern Group Mapping

Mapping is similar to working with a dictionary. You look for the value of the old
system (e.g. “Germany” or “United States”). In the same row, but in a different
column, you find the value for the new system (“DEU” and “USA”). The pattern
group mapping provides two implementation patterns (Figure 4):

• Mapping table. A mapping table stores a value of the old system (“Germany”)
and the corresponding value of the new system (“DEU”) in each row. Mapping
tables are specified best as Excel sheets by experts with business knowledge.
Then, the excel file is loaded into the database system. However, if the table is
very small, it might make sense to use a CASE statement instead of a mapping
table. Figure 4 provides a simple example based on the mapping table
MAP_COUNTRY. Simple means that there is one attribute used for choosing the
row (NAME), and one attribute is delivered back (ISO_CODE_3). The new value
is determined by a join statement.

SELECT c.CUSTOMER_ID, m.ISO_CODE_3
FROM CUS_OLD c LEFT OUTER JOIN MAP_COUNTRY m
 ON c.nationality=m.name

• Mapping function. Some mappings are more complex and too difficult to be
specified using a mapping table. A good example is temperature conversion from
degree Celsius to Fahrenheit, where e.g. 3.21°C=(3.21*9/5+32)F or if the assets
under management and the margin of a customer are mapped to a classification of
the customer. In this situation, a mapping function is needed as represented by f
in Figure 4. A corresponding mapping SQL statement would be:

SELECT CUSTOMER_ID, f(CONTRIBUTION_MARGIN, ASSETS)

FROM CUS_OLD

f

SGPSingapore

USAUnited States

DEUGermany

ISO_CODE_3NAMEMAP_COUNTRY

SGPSingapore

USAUnited States

DEUGermany

ISO_CODE_3NAMEMAP_COUNTRY

USA

SGP

DEU

NATIONALITYT_CUSTOMER

23.10.1968G5670

12.03.1948A5669

05.07.1970C5668

BIRTHDAYCLASSIFICATIONCUSTOMER_ID

USA

SGP

DEU

NATIONALITYT_CUSTOMER

23.10.1968G5670

12.03.1948A5669

05.07.1970C5668

BIRTHDAYCLASSIFICATIONCUSTOMER_ID

United States21‘787-3005670

Singapore5‘740‘22057‘2005669

Germany100‘5303‘5005668

NATIONALITYASSETSCONTRIBUTION_MARGINCUSTOMER_IDCUS_OLD

United States21‘787-3005670

Singapore5‘740‘22057‘2005669

Germany100‘5303‘5005668

NATIONALITYASSETSCONTRIBUTION_MARGINCUSTOMER_IDCUS_OLD

Fig. 4. Sample Tables Mapping Pattern Group

6.2 Pattern Group Restructuring

The old and the new system usually have different object models resulting in different
database schemata. Restructuring patterns help transform existing data to fit into the
database schema of the target system. The three main patterns are:

72 K. Haller

 T_CUS

25%5669

50%5670

0%5668

DISCOUNT_LEVELCUSTOMER_ID

T_CUS

25%5669

50%5670

0%5668

DISCOUNT_LEVELCUSTOMER_ID

T_ACC

56701000324419

56701000225055

FK_OWNER_IDACCOUNT_ID

56691000765208

5670

5669

1000565097

1000405201

T_ACC

56701000324419

56701000225055

FK_OWNER_IDACCOUNT_ID

56691000765208

5670

5669

1000565097

1000405201

LOG

PROBLEMID

Discount5670

LOG

PROBLEMID

Discount5670

T_ADDRESS

Denver

Singapore

Berlin

CITY

USA

SGP

DEU

COUNTRY

Main Street 504

112 Robinson Road

Unter den Linden 7

STREET

5670

FK_CUS_ID

5669

5668

T_ADDRESS

Denver

Singapore

Berlin

CITY

USA

SGP

DEU

COUNTRY

Main Street 504

112 Robinson Road

Unter den Linden 7

STREET

5670

FK_CUS_ID

5669

5668

Expansion

Reduction

Move

Expansion

Reduction

Move

Denver

Singapore

Berlin

CITY

Main Street 504

112 Robinson Road

Unter den Linden 7

STREET

5670

5669

5668

FK_CUS_ID

T_ADDRESS

Denver

Singapore

Berlin

CITY

Main Street 504

112 Robinson Road

Unter den Linden 7

STREET

5670

5669

5668

FK_CUS_ID

T_ADDRESS

T_ACCOUNT

50%56701000225055

25%56691000765208

25%56691000405201

5670

5670

FK_OWNER_ID

50%

25%

DISCOUNTACCOUNT_ID

1000565097

1000324419

T_ACCOUNT

50%56701000225055

25%56691000765208

25%56691000405201

5670

5670

FK_OWNER_ID

50%

25%

DISCOUNTACCOUNT_ID

1000565097

1000324419

T_CUSTOMER

5670

5669

5668

CUSTOMER_ID

SGP

USA

DEU

RESID_COUNTRY

T_CUSTOMER

5670

5669

5668

CUSTOMER_ID

SGP

USA

DEU

RESID_COUNTRY

Fig. 5. Restructuring Pattern Group Examples

• Simple Attribute Move. The old and the new data schema store the same
attribute in different tables. For example, the left schema in Figure 5 models the
country of residence as address information and stores it in the address table
T_ADDRESS. The right schema emphasizes the tax perspective. It stores the
country of residence as customer information in table T_CUSTOMER. The simple
attribute move pattern “moves” the information during the transformation step to
a different table, i.e. from T_ADDRESS to T_CUSTOMER.

• Expansion. Both schemata have a semantically similar attribute but modeled on
a different level of granularity. In Figure 5, the left schema provides a discount
level for each customer (T_CUS). Each customer can get one discount level for
all her bank charges, e.g. 0%, 50%, or even 100%. The right schema allows a
more sophisticated fee modeling. Each account can have a different discount
level. If the data from the left schema is migrated into the right one, the discount
level information is expanded by copying the value into each account.

• Reduction. It is the opposite of expansion. The old system allows a more
granular modeling than the new one. Thus, the migration is an approximation of
the old data. Information gets lost. If the migration in Figure 5 takes place from
right to left, customer 5670’s accounts have different discount levels in the right
schema. But the customer can have only one in the left schema. Depending on the
circumstances, it might be mandatory to log such loss of information (table LOG),
because customers must be informed about changes. Thus, it is important not
only to have a log table but also to have a process in place how to deal with such
problems.

7 Load Patterns

When the data is transformed, the migration team loads the data into the target
system. The implementation of the loading is the decision of the vendor. The vendor
can choose from three patterns (Figure 6): the direct approach, the simple API one,
and the workflow API one. The direct approach provides no API. All data is inserted

 Towards the Industrialization of Data Migration 73

Upload
Area

New Platform
Internal Tables

Workflow API Approach

Called for each customer who should be migrated.

Simple API Approach
Gets data from upload area and writes it into internal
target system tables (small transformations possible,
e.g. denormalization).

Direct Approach
Data is written directly into the internal target system
tables, potentially without upload area tables
(migration team).T

ran
sfo

rm
atio

n

Fig. 6. Data Loading Approaches

directly into the internal tables. The simple API approach provides an upload area
with API tables. The migration team inserts data into the API tables and invokes an
API load procedure, which writes the data into the internal tables of the system. The
workflow-based API approach also comes with an upload area with API tables.
However, the API invokes the workflow separately for each object in the API table.
The workflow is the same used e.g. by the GUI if new objects are entered manually.

Before we compare the patterns, we want to point out the vendor’s dilemma.
Customers are not willing to pay a premium for superior support for loading data
during the migration. But the vendor risks his reputation if the project fails due to data
migration problems. For a better understanding of the patterns, we compare them
considering the dimensions in Table 1. Error detection considers whether the
migration team gets feedback for each object whether it was migrated successfully. If
not, a reason shall be given. Conformity compares data migrated by the data migration
team and data manually entered via a GUI. The migrated data shall comply with the
same requirements as manually entered data. Vendor effort rates the investment
the vendor has to make. The migration team training addresses how much training the
implementation team needs to work efficiently. The migration team implementation
effort reflects the effort a trained team has for the implementation.

If the new system implements the direct approach, the core-banking system does
not detect any migration errors. At most, some triggers or constraints might prevent
the most severe mistakes. The conformity of migrated and manually entered data
might be weak if the migration team does not implement exactly the same checks

Table 1. Load Step Strategies

 Technical Dimensions Vendor Costs Costs Migration Team

 Error
Detection

Conformity Team Training Imple-
mentation

Direct
Approach

No support Not
guaranteed,
difficult to
achieve

No effort High, in-depth
understanding
of internal
tables needed

High(est) due
to the need to
implement all
checks

Simple
API

Handled by
API

Some confor-
mity, but not
guaranteed

High, if
conformity
desired

Low, requires
good vendor
documentation

Overhead for
guaranteeing
conformity

Workflow-
based API

Handled by
API

Guaranteed Initial costs
for framework,
rest low

Low, requires
good vendor
documentation

No overhead
for extra
checks

74 K. Haller

applied to manually entered data respectively if not all restrictions are enforced by the
database schema. However, the direct approach is the cheapest one for the vendor. It
costs nothing. On the other side, the migration team needs much training (respectively
learns by trial and error during the project, which is quite expensive). Also, the
implementation is costly because the migration team has to implement many
consistency checks.

The simple API approach means that the API copies the data from the API tables
(possibly with some changes) into the internal tables of the system. The API can
check for failures or non-compliances to the data model. The vendor either has to
implement the same checks again he already uses for the GUI (high costs) or there is
only a limited conformity guarantee. The benefit of an API for the migration team is
that the team needs less training due to a clearly defined API. The migration team’s
implementation effort is restricted to missing conformity checks; therefore, it looses
time by running into mistakes. The extra effort of the migration team depends how
much the customization can change, because the changes require adopting the
conformity checks or might be a source for mistakes.

If a vendor implements the workflow-based API approach, the workflows used
for checking the consistency and inserting new data into the system are identical for
data inserted via a GUI or data being migrated. The API uses existing workflows and
returns already defined error messages. The vendor has initial costs for a framework.
Afterwards, he has nearly no additional efforts no matter how many object types have
to be considered. Also the migration team benefits from this approach. It has low
training costs and gets data consistency guaranteed by the API.

8 Technical Migration Verification

A standard method for checking the functional correctness of applications is using test
cases. In data migration projects, this means checking whether all attributes of
selected objects are correctly migrated. Additionally, customers like banks or external
auditors want to be sure that no data is lost. Every single customer, account, etc. must
be checked. This is a task to be automated and usually termed technical migration
verification or reconciliation. The focus is on checking relevant, selected attributes of
all objects. Result is a reconciliation sheet. It is produced after each test data
migration as a feedback for the migration team and after the final data migration. In
the latter case, it enables the bank to decide whether the new system can replace the
old one.

Based on our experience, we suggest that a reconciliation sheet consists of two
parts, statistics and migration errors. Statistics provide an aggregated high level view,
e.g. how many objects (accounts or also the sum of assets under management) exist in
both systems and which only in one of the two. The migration errors part lists the
“needles in a haystack”. If three out of three million accounts are missing or have
different attribute values, the error section lists keys identifying the wrong or missing
objects together with the failure information (“object is missing” or “attribute
BALANCE has different values”).

We distinguish three patterns for deriving a reconciliation sheet (Table 2). The top-
down pattern is the simplest one. It is used only if a project has not (or has yet not

 Towards the Industrialization of Data Migration 75

Table 2. Reconciliation Strategies

Pattern Idea Identification Usage Restrictions Recon Sheet
Section

Top-down Counting,
potentially
grouped by

Object type level, based
on table or characteristic
attributes

No restrictions. Statistics

Bottom-up
equivalence

Comparing
row by row

Key candidate are
equivalent in both cases,
attributes to be compared
belong in both systems to
the same object type

Key candidate
attributes or attributes
to be compared must
not be involved in a
restructuring

Comparison,
results can be
aggregated to
statistics

Bottom-up
fingerprint

Comparing
aggregated
row
information

Aggregated rows have a
common key attribute (but
not a key for each row)

Useful in case of
restructuring

Comparison,
results can be
aggregated to
statistics

had) enough time to implement a sophisticated reconciliation. At least, it informs
whether a large number of objects are missing. It creates the statistics section only by
counting the objects in the old and new system, possibly considering subtypes. The
accounts’ reconciliation sheet in Figure 7 illustrates the aspect with the statistics for
the accounts with subtype information (customer, nostro, etc.).

For identifying which single account got lost or has a wrong type, the comparison
section of the reconciliation sheet must be created. The bottom-up equivalence
pattern is one possibility. It creates a unique key for each row in the tables of the old
and new system and looks whether there is a corresponding one in the other table. The
attribute ACCOUND_ID, for example, is a good key for the tables T_ACCOUNT_OLD
and T_ACCOUNT_NEW. The pattern can be implemented as following:

SELECT o.ACCOUNT_ID, n.ACCOUNT_ID,
CASE WHEN o.ACCOUNT_ID is not null AND n.ACCOUNT_ID is not null THEN 'OK'
 ELSE 'FAILED'
END as match

FROM t_account_old o FULL OUTER JOIN t_account_new n ON n.account_id=o.account_id

It is mandatory to use a full outer join to identify rows in the old or the new system
missing a counterpart in the other one. In our example, account 1000765208 exists
only in the old system and 5000565097 is a phantom only existing in the new system.
If the keys match, selected attributes are checked for correctness. The equivalence
comparison includes relevant and comparable attributes. The only comparable
attributes for accounts is the account type, which fails for account 9500000084. To
get this result, we extend the matching join-condition as following:

SELECT o.ACCOUNT_ID, n.ACCOUNT_ID,
CASE WHEN o.ACCOUNT_ID is not null AND n.ACCOUNT_ID is not null THEN 'OK'

 ELSE 'FAILED'
 END as match,

CASE WHEN o.ACCOUNT_TYPE = n.ACCOUNT_TYPE THEN 'OK'
 ELSE 'ERROR'

END as equal
FROM t_account_old o FULL OUTER JOIN t_account new n ON

n.account_id=o.account_id

In practice, the bottom-up equivalence pattern works well for 90-95% of the
situations. The interest rates example in Figure 7 is one where it fails. A good
reconciliation would use a pair <ACCOUNT_ID, LIMIT> as a key and compare the

76 K. Haller

interest rate as the most relevant attribute. This is not possible because the limit in the
old system is an upper limit whereas the one in the new system a lower one. The
worst thing one can do in such a situation is to copy the code used to transform
the upper to a lower limit. If this is done, the reconciliation looks always perfect. The
data migration step and the reconciliation have the same input and process the data in
the same way. Thus, the results are the same no matter how wrong the transformation
itself is. In such situations, the bottom-up fingerprint pattern helps. A fingerprint (a
kind of hash value) is constructed using all relevant attributes, but it is not necessarily
a semantically sensible piece of information.

We discuss now three sample fingerprints for the situation above. The simplest
fingerprint is to look whether interests exist in the old and the new system for exactly
the same accounts. Better would be option two, i.e. to look whether accounts with
interests have always the same number of interests in both systems (like account
1000405201 having three ones). The third approach, which we used in our projects, is
to sum up the interest rates for each account. It is semantically nonsense to calculate
3.00%+3.50%+3.75%=10.25% for account 1000405201. However, the rate
information is included and the number of limits also influences the result. Our
fingerprint does not guarantee that the limit - rate relationship is correct. However,
such systematic failures should be detected by the manual migration verification,

C
om

pa
ri

so
n

A
cc

o
un

ts

Profit-Loss

Nostro

Vostro

Customer

Customer

Customer

ACCOUNT_TYPE

SINGAPORE

NEW YORK

BAHAMAS

MUNICH

ZUERICH

HONG KONG

BRANCH

5000565097

9500000084

3000324419

1000225055

1000765208

1000405201

ACCOUNT_IDT_ACCOUNT_OLD

Profit-Loss

Nostro

Vostro

Customer

Customer

Customer

ACCOUNT_TYPE

SINGAPORE

NEW YORK

BAHAMAS

MUNICH

ZUERICH

HONG KONG

BRANCH

5000565097

9500000084

3000324419

1000225055

1000765208

1000405201

ACCOUNT_IDT_ACCOUNT_OLD

3

4

4

10

4

5

CLASSIFICATION

Nostro

Nostro

Nostro

Vostro

Customer

Customer

ACCOUNT_TYPE

5000165097

5000565097

9500000084

3000324419

1000225055

1000405201

ACCOUNT_IDT_ACCOUNT_NEW

3

4

4

10

4

5

CLASSIFICATION

Nostro

Nostro

Nostro

Vostro

Customer

Customer

ACCOUNT_TYPE

5000165097

5000565097

9500000084

3000324419

1000225055

1000405201

ACCOUNT_IDT_ACCOUNT_NEW

3.50%NULL1000225055

NULL

150‘000

NULL

NULL

200‘000

50‘000

UPPERLIMIT

3.10%1000225055

0.50%3000324419

3.00%1000765208

3.75%1000405201

3.50%1000405201

3.00%1000405201

RATEACCOUNT_IDT_INTR_OLD

3.50%NULL1000225055

NULL

150‘000

NULL

NULL

200‘000

50‘000

UPPERLIMIT

3.10%1000225055

0.50%3000324419

3.00%1000765208

3.75%1000405201

3.50%1000405201

3.00%1000405201

RATEACCOUNT_IDT_INTR_OLD

3.50%150‘0001000225055

0

0

200‘000

50‘000

0

LOWERLIMIT

3.00%1000225055

0.50%3000324419

3.75%1000405201

3.50%1000405201

3.00%1000405201

RATEACCOUNT_IDT_INTR_NEW

3.50%150‘0001000225055

0

0

200‘000

50‘000

0

LOWERLIMIT

3.00%1000225055

0.50%3000324419

3.75%1000405201

3.50%1000405201

3.00%1000405201

RATEACCOUNT_IDT_INTR_NEW

T
ran

sform
ation

/M
ig

ration

C
o

m
pa

ri
so

n
In

te
re

st
s

0.50%30003244190.50%3000324419

6.50%10002250556.60%1000225055

3.00%1000765208

10.25%100040520110.25%1000405201

Fingerprint_1KeyFingerprint_1Key
EqualMatch

NewOld

0.50%30003244190.50%3000324419

6.50%10002250556.60%1000225055

3.00%1000765208

10.25%100040520110.25%1000405201

Fingerprint_1KeyFingerprint_1Key
EqualMatch

NewOld

Nostro9500000084Profit-Loss9500000084

Nostro5000565097

Nostro5000165097Nostro5000565097

Vostro3000324419Vostro3000324419

Customer1000225055Customer1000225055

Customer1000765208

Customer1000405201Customer1000405201

Value_1KeyValue_1Key
EqualMatch

NewOld

Nostro9500000084Profit-Loss9500000084

Nostro5000565097

Nostro5000165097Nostro5000565097

Vostro3000324419Vostro3000324419

Customer1000225055Customer1000225055

Customer1000765208

Customer1000405201Customer1000405201

Value_1KeyValue_1Key
EqualMatch

NewOld

R
ec

on
ci

lia
ti

on
 S

h
ee

t
A

cc
o

un
ts

R
ec

o
nc

ili
at

io
n

S
he

et
A

cc
ou

nt
s

Nostro9500000084Profit-Loss9500000084

Nostro5000565097

Customer1000765208

Value_1KeyValue_1Key
EqualMatch

NewOld

Section 2: Migration Errors

66Total

014. Profit-Lost

113. Vostro

312. Nostro

231. Customer

NewOldType

Section 1: Statistics

Nostro9500000084Profit-Loss9500000084

Nostro5000565097

Customer1000765208

Value_1KeyValue_1Key
EqualMatch

NewOld

Section 2: Migration Errors

66Total

014. Profit-Lost

113. Vostro

312. Nostro

231. Customer

NewOldType

Section 1: Statistics

6.50%10002250556.60%1000225055

3.00%1000765208

Fingerprint_1KeyFingerprint_1Key
EqualMatch

NewOld

Section 2: Migration Errors

47Total

NewOldType

Section 1: Statistics

6.50%10002250556.60%1000225055

3.00%1000765208

Fingerprint_1KeyFingerprint_1Key
EqualMatch

NewOld

Section 2: Migration Errors

47Total

NewOldType

Section 1: Statistics

Reconciliation: Statistics and Migration Errors

Reconciliation: Comparison Preparation

Fig. 1. Reconciliation Sheet Generation Process

 Towards the Industrialization of Data Migration 77

which should include test cases with accounts with complex interest rate information.
This fingerprint could be implemented as following:

SELECT o.ACCOUNT_ID, n.ACCOUNT_ID,
CASE WHEN o.ACCOUNT_ID is not null AND n.ACCOUNT_ID is not null THEN 'OK'
 ELSE 'FAILED'
END as match,
CASE WHEN o.FINGERPRINT= n. FINGERPRINT THEN 'OK'
 ELSE 'ERROR'
END as equal
FROM (SELECT ACCOUNT_ID, SUM(RATE) as fingerprint
 FROM T_INTR_OLD GROUP BY ACCOUNT_ID) o
FULL OUTER JOIN (SELECT ACCOUNT_ID, SUM(RATE) as fingerprint
 FROM T_INTR_NEW GROUP BY ACCOUNT_ID) n
ON n.account_id=o.account_id

Data migration is often overlooked, but it is crucial for success when replacing an
old by a new system. Our data migration architecture relies on an ETL process based
data migration architecture. It defines clear objectives for the different ETL steps.
Decoupling and filtering takes place in the extract step, mapping and restructuring
data to fit into the schema of the target system follow in the transformation step.
Getting the data into the target system with a feedback about the success takes place
during the load step. Furthermore, we present the typical patterns developers find in
their project such that they can rely on simple building blocks for their
implementation. By also addressing the reconciliation challenge which is unique for
data migration projects, all our concepts together form a blueprint for the
implementation tasks in data migration projects. Companies can easily incorporate
our work into their development processes. Thereby, they improve the standardization
and industrialization of data migration in their projects.

References

1. Gabriel, C.: Plattform-Wechsel: Parforce-Übung mit weitreichenden Folgen, Schweizer
Bank, Zürich (June 2007)

2. CMMI for Development, Version 1.2, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA (2006)

3. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman,
Boston (2002)

4. Fraternali, P.: Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey. ACM Computing Surveys 31(3) (September 1999)

5. LeanStream® – COMIT Implementationsmethodik, V. 3.0, Comit AG, Zürich (2007)
6. Haller, K.: Datenmigration bei Standardsoftware-Einführungsprojekten. Datenbank-

Spektrum 8(25), 39–46 (2008)
7. Haller, K.: Data Migration Project Management and Standard. In: 5th Conference on Data

Warehousing (DW 2008), St. Gallen, Switzerland. Lecture Notes in Informatics (2008)
8. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology.

SIGMOD Record 26(1), NY (1997)
9. Wu, B., Lawless, D., Bisbal, J., et al.: The Butterfly Methodology: A Gateway-free

Approach for Migrating Legacy Information Systems. In: ICECCS, Como, Italy (1997)
10. Morris, J.: Practical Data Migration. British Computer Society, Swindon (2006)
11. Data Migration – The Endava Approach, White Paper, London (2006)
12. Burry, C., Mancusi, D.: How to plan for data migration, Computerworld, May 21 (2004)

78 K. Haller

13. Hudicka, J.R.: An Overview of Data Migration Methodology. Select Magazine,
Independent Oracle Users Group, Chicago, IL (April 1998)

14. Willinger, J., Gradl, J.: Data Migration in SAP R/3. Galileo Press, Boston (2004)
15. Anavi-Chaput, V., et al.: Planning for a Migration of PeopleSoft 7.5 from Oracle/UNIX to

DB2 for OS/390 (Red Book), IBM, Poughkeepsie, NY (2000)
16. Manek: Microsoft CRM Data Migration Framework (White Paper), Microsoft Corporation

(2003)
17. Crreira, P., Galhardas, H.: Efficient development of data migration transformations. In:

SIGMOD, Paris, France (2004)
18. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB

Journal 10, 334–350 (2001)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

