
White-Box Testing for Database-driven Applications:
A Requirements Analysis

Klaus Haller
COMIT AG,

Pflanzschulstr. 7
 CH-8004 Zürich, Switzerland

klaus.haller@comit.ch

ABSTRACT
White-box testing is an important part of every software testing
and quality assurance strategy. Testing database-driven
applications requires the adoption of white-box testing, but it is
not clear what adoption is needed. Instead of focusing on a single
problem and a possible solution, this paper elaborates all of the
main challenges from a practitioner’s view. Starting with a
generic testing process, we analyze for each process step whether
and, if so, which adoptions are needed, and redefine the concepts
of test cases and coverage. We discuss test database state
generation methods and the problem of scheduling test cases
efficiently. Thereby, we provide a road map for the emerging
domain of testing database-driven applications and for making
such testing useful for commercial software development.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification,
D.2.5 [Testing and Debugging]: Testing tools, coverage testing,
H.0 [GENERAL]

Keywords
Information Systems, Databases, Testing, Test Coverage

1. MOTIVATION
After decades of software development practice, companies can
still differentiate from competitors by the reliability of their
products. Testing is a key issue in reliability and quality
assurance. However, the specifics of tests for database-driven
applications (DBAPs) are too often neglected because there are no
clear guidelines and tools for such tests. To address this challenge
and thereby improving our software testing process, we decided to
focus first on the DBAP specifics of white-box testing. In general,
white-box testing is an attractive option because it allows
identifying test cases automatically. Our discussion is based on
our experience in two application areas: PL/SQL script
development for data migration purposes [1][2] and software
development in the area of credit ratings in commercial banking.
We structure our presentation as follows: Section 2 provides an
overview of the different testing approaches and tasks in the
testing process. Specific challenges of DBAPs are the focus of

Section 3. Section 4 focuses on test coverage issues. Section 5
analyzes correctness criteria and test cases for DBAPs. We
continue with how to generate test data (Section 6), how to select
test cases for regression testing (Section 7), and how to schedule
test cases efficiently (Section 8). We conclude our paper with a
short discussion and outlook (Section 9).

2. TESTING TASKS AND APPROACHES
There are many reasons for testing DBAPs. For example, load and
performance tests check how a DBAP performs if the DBAP is
used concurrently by many users. Source code inspection might
try to identify potential security leaks. In this paper, we are
interested in the functional correctness of a DBAP: whether it
returns the specified results. Functional testing approaches are
grouped into three types: experience-based, dynamic, and static.
Experience-based testing relies on the know-how of testers and
users. Static tests inspect the code without executing it, e.g., to
find variables read but not initiated before. Dynamic testing
invokes the application and checks whether it returns the expected
results. The two main dynamic testing approaches are white-box-
testing and black-box-testing. Black-box testing identifies test
cases without looking at the source code but by analyzing the
specification. White-box-testing analyzes the source code, e.g., to
identify possible execution paths and parameter sets for the
invocation to ensure that the intended execution path is taken. [3]
The testing process for DBAPs (Figure 1) consists of three phases:
preparation, execution, and evaluation. The preparation phase
comprises the test case identification task and the test data (state)
generation task. The execution phase consists of three tasks. The
first task is selecting the relevant test cases for regression tests.
Executing only “needed” tests lowers costs. Secondly, test cases
should be executed in an optimal order to prevent the need for a
new database state to be loaded for each test case. Thirdly, it is
important to log the execution so that failures can be analyzed
more easily. The evaluation phase is formed by the interpretation
of test results and the clean-up of the database. In this paper, we
concentrate on the tasks requiring an in-depth discussion – all but
the evaluation and logging tasks.

Figure 1: The Testing Process: Phases and Tasks

3. CHALLENGES
With so much existing work on testing, it is important to start with
identifying the challenges specific to DBAPs. Therefore, we rely
on a generic DBAP model (Figure 2). In the upper section, a
procedure symbolizes the application. The procedure has input

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DBTest’09, June 29, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-706-6/09/06...$5.00.

Execution
• Test Case Selection
• Test Case Scheduling
• Logging

Evaluation
• Interpretation
• Clean Up

Preparation
•Test Case Identification
•Test Data/State Generation

and output parameters and uses transient variables. The procedure
contains embedded SQL statements that access the database. The
SQL engine executes the statements, thereby accessing the
database tables. We identified four DBAP-specific challenges.
Challenge 1 (State Challenge): Testing stateless applications
means invoking a procedure and checking whether it returns the
specified values. DBAPs additionally interact with a database,
which stores data such as account balances persistently (Figure 2

). Thus, test cases must also specify the database state before
test case execution and the expected state afterwards.
Challenge 2 (Language Layers Challenge): A DBAP can access
a database in different ways. Firstly, many databases provide a
programming language and execution environment, such as
Oracle with PL/SQL. Secondly, the programming language used
for application programming might provide a library such as
JDBC for database access. Finally, there are persistency
frameworks, such as Hibernate. In all cases, there are two layers
involved: a “normal” programming language and the database
access specification. The coupling and interplay of the two layers
requires special attention ().
Challenge 3 (Data Parallelism Coverage Challenge): SQL (or
XQuery) are set-oriented and inherently carry data parallelism.
Executing the SQL statements means accessing, evaluating, and
potentially changing many rows in parallel (). This requires
rethinking coverage criteria for DBAPs.
Challenge 4 (Dynamic Code Challenge): The Java reflection API
allows modifying code at run-time. It is rarely used. In contrast,
SQL statements are often constructed on-the-fly in DBAPs. This
causes difficult problems in general which are outside of the focus
of this paper.

Figure 2: Generic DBAP Model

4. DATA PARALLELISM AND COVERAGE
The quality of test case sets depends not on their size, but on their
variety. Variety means that different situations and different parts
of the application are tested. In literature, the standard term is
“coverage”, inspired by the aim of covering all code parts and
conditions to be tested [4]. Our discussion is based on the control-
flow-based coverage criteria [3]. In short, these criteria represent
an application as a directed graph. Test cases are execution paths
between the start node and the end node. Nodes are (linear)
statement sequences. Edges between nodes are transitions taken if
the condition of the edge is fulfilled. Coverage criteria decide
whether a set of test cases provides sufficient variety. Three main
coverage criteria exist: statement coverage (each node/statement
sequence is executed at least once), branch coverage (each edge is
used at least once), and path coverage (each possible path from
the start node to the end node is taken).
Commercial tools like IBM Rational PurifyPlus [5] allow, for
example, checking whether all application code has been
executed. To our best knowledge, there is nothing comparable for

DBAP coverage criteria, though much effort has been put into
identifying suitable criteria. Suggestions are to check whether all
tables are accessed, whether all embedded SQL actions have been
executed, or whether the flow of data items between different
SQL statements is tested [6]. A different approach concentrates on
the coverage aspect of single SQL statements and the terms in
their WHERE clause respectively their JOIN conditions [7].
Again, we find research concentrating either on complete
execution paths or on single statements only. Each concept is too
radical to be used alone in practice. The crucial but not obvious
point is the data parallelism coverage challenge and the involved
effort. We illustrate this in a short example. Let us assume that a
bank sends small Christmas presents to customers with bank
accounts containing at least 20’000 EUR or to everyone they
know who turned 18 or 65 during the year. This translates into the
following selection criterion:
SELECT p.customerid
FROM t_persons p

LEFT OUTER JOIN t_account a
ON p.customerid=a.customerid

WHERE YEAR(p.birthday)-YEAR(%TODAY)=18 OR
YEAR(p.birthday)-YEAR(%TODAY)=65 OR
a.balance>19999

The statement has three terms in the where clause (e.g.,
a.balance>19999) and one term in the join condition
(p.customerid=a.customerid). There are two obvious
coverage criteria:
a) Elementary query complexity fulfillment: There is at least

one row or row combination such that all where-terms are at
least once true and once false.1 Join conditions must be
satisfied at least once and at least once not.

b) Complete query complexity fulfillment: There is at least
one row combination row for each possible combination of
term results. If there are terms t1 and t2, there shall be at least
one row for which t1 is true and t2 is true, one row for which
t1 is false and t2 is true etc. Join-conditions have five
situations to be considered: (I) ANY X/THE SAME X, (II)
ANY X/ANY Y, Y≠X, (III) NULL/NULL, (IV) ANY X
/NULL, (V) NULL/ANY X.

Figure 3 provides a short example. The upper of the three sections
shows two tables with sample data. The middle section consists of
a view of a full outer join of the tables involved in the join. The
lower section addresses the fulfillment aspect. Elementary
fulfillment is straightforward. Each term of the WHERE clause
referencing attributes of T_ACC respective of T_PERS
corresponds to a row in the fulfillment table in the lower part (A,
B). If the attribute “Fulfilling rowid” contains a row id, there is at
least one row in table T_ACC respectively T_PERS covering this
case. Next, all join conditions of the query should be fulfilled at
least once by the row combination (C). The complete fulfillment
table is much more complex. There is one column for each term
or join condition (X) and all possible combinations have to be
considered (Y).

1 We informally use the term “row combination”. It is a

combination of different rows involved in joins. Thus, a row
combination row is a row of the full outer join of all involved
tables. Certainly the NULL case requires special attention, as a
recently emerged discussion shows [8]. However, this question
is not a main concern for this paper.

In
pu

t
P

ar
am

et
er

s

a
b
c

O
utput

Param
eters

e

Procedure Variables x y z

DBMS

Persistent Tables

SQL Engine

E
m

b.
 S

Q
L

S
ta

te
m

en
t

be
gi

n

en
d

d

1

2

3

Elementary fulfillment has linear complexity in terms of needed
test cases (the sum of twice the number of selection terms and join
conditions), but covers only a few interesting cases. Complete
fulfillment looks preferable, but has exponential complexity. The
complexity prevents its usage in practical software engineering.
DBAPs usually have hundreds of much more complex queries.
Even having sample data for each row of the complete fulfillment
table is not enough. It is manual work to decide for each row
whether it should be in the result set.
The only way we see to address the fundamental dilemma of
DBAP testing, the sheer amount of data and manual work needed,
is to identify the complex and risky statements (respectively
statement sequences). Each of them is tested on its own
considering query fulfillment coverage. Additionally, there are
normal unit-testing test cases like invoking procedures. They
focus on execution path aspects. So, we have two test case types
complementing each other. The following section discusses them
further by introducing the terminology of “deep” and “shallow”
test cases.

5. CORRECTNESS AND TEST CASES
The standard approach for evaluating the functional correctness of
stateless functions is based on (stateless) test cases. A stateless
test case consists of the procedure to be tested, input parameter
values, and the expected output parameter values.
Definition (stateless test case): A stateless test case TCSL is a
triple TCSL=< ρ, ΠI, ΠO> consisting of the procedure ρ to be
invoked, input parameter values ΠI, and the expected output
values ΠO.
DBAPs require a modified correctness criterion and an adopted
test case concept. Table 1 compiles the different correctness
criteria. They are mostly extractions from previously published
works of different authors. However, understanding the
similarities and differences between them is a major step for
understanding why so much different work exists on DBAP
testing.
We name the first DBAP correctness criterion schema
correctness. Schema correctness means that the schema reflects a
specification and the real world correctly, as intended. In other
words, the data model is defined correctly and implemented
accordingly. A second criterion is data conformity correctness.
This criterion assumes that there are two kinds of constraints:

those enforced and those not enforced by the database schema.2
Data conformity correctness checks whether DBAP data violates
the latter constraints. Chays et al. [9] identified this criterion and
provided a solution.
In our software development projects, a third criterion is the most
relevant: application correctness. This criterion is based on test
cases. We distinguish two types: shallow test cases and deep test
cases. Deep test cases focus on the data and data manipulation,
e.g., of the correctness of a sequence of SQL statements
calculating the interest rates for bank accounts. Shallow test cases
are on a higher level. They concentrate on the execution of
complete execution paths. A sample execution path is the end-of-
year processing of a bank. First, the process invokes the
calculation of interest payments and ensures that the payments are
booked. Then it invokes a service to make out the balance sheet.
More precisely, a shallow test case invokes a procedure ρ with
given input parameter values ΠI and constraints ΣI defining the
database state before the invocation. The constraints can be a set
of rows (or even all rows) which must be in the database tables,
but can also include requirements such as the existence of at least
one account for customer 505 or constraints regarding the
database and session configuration (e.g., date to char conversion
rules or isolation levels). After the execution of the procedure, the
output parameter values ΠO are checked against the values stated
in the test case specification. In addition, the database state is
checked to determine whether it fulfills the constraints ΣO defined
to be valid after the execution of the test case.
This test case and correctness model was introduced by Willmor
et al. (see e.g. [10]). It is sufficient for small applications.
Complex systems such as core-banking platforms have different
needs. It is not sufficient to state that the balance of account
554887 is CHF 1’000 and that the interest rate is 2.5%. Complex
systems require seed data. Accounts must have an owner. Interest
payments for customers imply corresponding bookings on internal
expense accounts etc. A practical useful input database definition
has two parts. Firstly, there are hard requirement like “balance of
account 554887 is CHF 1’000.” Secondly, there is a suggestion
for a sensible overall database state like “take the database
snapshot of January 3rd at 8 p.m.” However, other states might
work as well. Distinguishing between hard entry constraints ΣI

*
(the account balance) and suggested entry constraints ΣI

+ (system
state as of January 3rd) gives additional freedom for scheduling
test cases. We take advantage of this distinction in Section 8.

2 It is important to be aware that the term constraint has two

meanings in this paper. Firstly, there are DB constraints such as
NOT NULL. Secondly, constraints can be first or second order
logical expressions such as, “there is a customer with ID 505”.

missingAGE=65T_PER

1¬(AGE=65)T_PER

2BALANCE>19999T_ACC

1¬(BALANCE>19999)T_ACC

1JoinT_ACC
× T_PER

1AGE=18T_PER

2¬(AGE=18)T_PER

Elementary Fulfillment

No join

Term

2T_ACC
× T_PER

Fulfilling
RowidTable

missingAGE=65T_PER

1¬(AGE=65)T_PER

2BALANCE>19999T_ACC

1¬(BALANCE>19999)T_ACC

1JoinT_ACC
× T_PER

1AGE=18T_PER

2¬(AGE=18)T_PER

Elementary Fulfillment

No join

Term

2T_ACC
× T_PER

Fulfilling
RowidTable

206Rowid 2

185Rowid 1

AGECUS_IDT_PER

206Rowid 2

185Rowid 1

AGECUS_IDT_PER

50’0006Rowid 2

2’0005Rowid 1

BALANCECUS_IDT_ACC

50’0006Rowid 2

2’0005Rowid 1

BALANCECUS_IDT_ACC

×

Complete Fulfillment

…

YES

YES

YES

…

BALANCE
>19999

…

NO

NO

NO

YES

AGE=65

…

YES

YES

YES

YES

AGE=18

Impos-
sible

…

1I

……

2II

missingIII

Fulfilling
RowidJOIN

Complete Fulfillment

…

YES

YES

YES

…

BALANCE
>19999

…

NO

NO

NO

YES

AGE=65

…

YES

YES

YES

YES

AGE=18

Impos-
sible

…

1I

……

2II

missingIII

Fulfilling
RowidJOIN

D
atabase
Tables

R
ow

 com
bination

Fulfillm
ent Evaluation

50’0006206Rowid 4

2’0005206Rowid 3

50’0006185Rowid 2

2’0005185Rowid 1

BALANCECUS_IDAGECUS_IDP×A

50’0006206Rowid 4

2’0005206Rowid 3

50’0006185Rowid 2

2’0005185Rowid 1

BALANCECUS_IDAGECUS_IDP×A

A

B

C

X

Y

Figure 3: Coverage Fulfillment Example

 Criterion Focus
1 Schema

Correctness
Implemented schema reflects real-
world (and data model)

2 Data Conformity
Correctness

Data reflects not-schema-enforced
constraints of the data model

3 Application
Correctness (AC)

Results as defined in test cases

3a - Deep AC Table contents after one or more
SQL statements

3b - Shallow AC Return values and side-effects in
DB after complete execution path

Table 1: DBAP Correctness Criteria

Definition (shallow test case): A shallow test case TCS is a 6-
tuple TCS=< ρ, ΠI, ΣI

*, ΣI
+, ΠO, ΣO> consisting of the procedure

ρ to be invoked, input parameter values ΠI, explicit constraints ΣI
*

for the starting database state, implicit constraints ΣI
+ for the

starting database state, the expected output parameter values ΠO,,
and the expected resulting database state ΣO .
Shallow test cases precisely specify an expected end-to-end test
case. They are expensive to generate and maintain, especially if
there is no tool support. To limit their number (and thereby effort
and costs), they should be used only for crucial functionality and
not for checking minor variants of calculations.
Deep test cases form the second test case type for DBAPs. This
idea is based on work on the AGENDA framework [11]. An
application is a sequence of one or more set-oriented statements
such as UPDATE, DELETE, or SELECT. The statements can
access one or more tables. Deep test cases consist of the
statements and two constraint sets. The first (qualifying)
constraint set ΣQ defines the data for which the test case is
applicable. The qualifying constraints are evaluated for each row
before the sequence of statements is executed. Afterwards, all
rows that fulfilled the qualifying constraints are checked against
the second (evaluation) constraint set ΣE. Rows fulfilling the
qualifying constraints, but not the evaluation constraints, are
failures.
Definition (deep test case): A deep test case TCD is a triple
TCD=< σ, ΣQ, ΣE> consisting of a sequence of statements σ to be
performed, the qualifying constraints ΣQ, and the constraint set ΣE
defining which constraints the qualifying rows must fulfill after
the execution of σ.
To give a short example: A test case shall check the correctness of
the interest bookings for all Swiss Francs savings accounts. The
interest rate shall be 0.75%. We assume that one table stores all
customer accounts and their actual balances. The deep test case is
constructed as follows: All booking statements together form σ.
The qualifying constraints ΣQ are (i) that the account type must be
savings and (ii) that the currency must be CHF. The evaluation
constraint set ΣE demands that the account balance has been
increased by 0.75%.
Deep test cases operate on large data sets. They are helpful for
complex statements used for batch-operations such as interest
payments during the end-of-year processing. Deep test cases can
check different variants of transformations and calculations
concurrently. One might imagine using them to check the interest
bookings on not only Swiss Francs savings accounts but on all
accounts by simply adding additional deep test cases. This is
much cheaper than setting up many shallow test cases where
suitable accounts must be identified or created and maintained.
However, it is crucial for deep test cases to have “varied” data.

6. TEST CASE DATA ENGINEERING
Test case identification corresponds to the construction of
constraint sets. Constraint sets ensure the execution of certain
execution paths (shallow test cases) or guarantee a certain data
parallelism coverage criterion (deep test cases). The next step is to
populate the database with fitting data. Some research prototypes
exist [10][12], but there are no tools for commercial DBAP
development. Thus, we elaborate the consequences for the testing
process if the database state is not optimal.
Usefulness of a database state is expressed by four compliance
levels: type compliance, schema compliance, application

compliance, and path compliance. Type compliance demands only
that test data to be inserted into tables conforms to the attribute
types the columns have, e.g., only numbers are inserted into
NUMBER columns. Schema compliance requires additionally that
all rows respect the schema constraints (NOT NULL, primary-
foreign key constraints, etc.). If data is not schema compliant, the
database refuses it. Thus, each database state loaded successfully
in a database is guaranteed to be schema compliant. Application
compliance is the third level. Applications do not write and
process all schema-compliant data. A core-banking system could,
for example, prevent negative balances on saving accounts by
implementing conditions in the DBAP code for withdrawals and
money transfers, but there are no corresponding schema
constraints. Application compliance demands that test data
contains only data that could only be inserted and processed by
the DBAP. Finally, path compliance assures that the data is the
right data for executing a certain execution path. If the path
requires account 1774552 to have a balance over CHF 100’000,
path compliance guarantees it.
Figure 4 illustrates the compliance level hierarchy. Cells of the
matrix represent database states (we abstract from input
parameters here). All cells together form the universe of possible
database states. A cell can represent data that cannot be loaded
into the database because it is not schema compliant (–). A cell
can also indicate that its execution does not identify a failure
(), indicate a false positive (↓) or a failure (). False-
positive means that testers seem to find a failure, but the failure
does not appear in normal application usage. The only reason for
this is that the application is used in an unspecified way. For
example, if a closed savings account is defined as having a
balance of zero, the application code can assume this without
checking it. So if the test data contains closed saving accounts
with a negative balance, the application might react unexpectedly.
Thus, test data must be at least application-compliant to prevent
false-positives.
The first goal of testing is to find all failures. A failure in the
application code can be detected with different test data
constellations. Cells in Figure 4 with “ ” allow us to identify one
of two failures, one represented by a white background color, the
other by a dark grey one. Finding all failures demands the
execution of one test case per execution path. If we execute each
test case with path compliant data, we find all failures. If we do
not have the right data, we do not know (at least not a priori)
which execution path we finally execute. Instead of executing
path A, which assumes five rows in a table, we might take path B
because the table is empty. If each execution path is not executed
at least once, this is a risk for software quality.
Finally, we take a closer look at the approaches for data
generation and the compliance level they assure:

• Tester defined. A tester manually specifies the test data, e.g.,
after a code analysis. Thereby, she can ensure path-

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–– – – – –
Type compliant
Schema compliant
Application compliant
Path compliant with

path 1, 2, 3, 4

B

Testing with non-path
compliant test data:
needed data/intended path
(A) and actually available
data/ executed path (B)

A

Figure 4: Sample Test Data Universe

compliance. This approach is useful for a few test cases and
small data sets.

• Schema-derived. Schema definitions restrict the data that can
be stored in the table by constraints such as primary-foreign-
key-constraints or NOT NULL-constraints. Collecting all
constraints from the database catalog allows the generation
of schema-compliant data.

• Path-derived. Execution paths might require certain data in
the database to be defined by constraint sets. A constraint
solver solves the constraints and thereby generates path
compliant test data automatically. Prototypes with limitations
exist [7][10], but we are not aware of any suitable tool for
commercial DBAP development projects. Furthermore,
Muli-RQP [13] is a convincing approach for generating test
database states based on declarative test case specifications.

• Live-data. DBAPs in use have live-data in their databases.
Live-data is always application-compliant (at least for the
current version of the application). Some authors argue
strongly against using live-data [14]. We have learned during
many projects that using live-data is the cleverest thing one
can do, especially for deep test cases. For shallow test cases
it might require much manual work to determine that account
10008 and not account 10009 is useful for a certain test case.

7. TEST CASE SELECTION FOR
REGRESSION TESTS
When a new application is tested for the first time, it is sensible to
execute all test cases. It is sensible to execute all tests before a
major release of a DBAP is shipped to customers, too, but only if
the test case set is not too large. However, in most cases
regression testing is the only choice for cost reasons. Regression
testing executes a test case again only if the application has been
changed and the change might affect this test case [4]. Reasoning
about the potential effect requires (a) analyzing how the
application has changed and (b) identifying how changes are
linked to test cases. Regression test case selection analyzes the
source code to find changes in the case of stateless applications
and determines the affected execution paths respective to the
corresponding test cases. Willmor and Embury were the first to
rethink regression test case selection for DBAPs [15]. In our
paper, we want to complement their work with a discussion
structured by the different DBAP components and DBAP data:

• Application code. If we change the application code, there is
a need for retesting the DBAP.

• Database schema. If the size of attributes changes (for
example, VARCHAR2(100) to VARCHAR2(1000) or to
VARCHAR2(10)), the application code is unchanged but the
application might crash nevertheless. Adding new attributes
can affect e.g. SELECT * FROM T_TAB statements. They
return more attributes. If a NOT NULL constraint is added,
inputs that succeeded before might fail. In other words,
database schema changes usually impact large parts of the
application.

• Application data. If a bank adds a new customer to the
database, there is no need for retests.

• Metadata. Systems often store metadata such as the account
products a bank offers. If the application code contains fix
references, for example, in a workflow (if product_id=500
then …) for savings accounts, this is obviously bad coding
practice. But changing the metadata might require regression

tests. However, distinguishing between application and
metadata is often difficult.

8. TEST CASE SCHEDULING
Test case scheduling is an issue when testing complex and data-
intensive DBAPs such as core banking systems. Restoring
respectively loading a database snapshot of the complete system
requires hours even for small or medium-sized banks. Let us
assume that a regression test executes twenty test cases and
loading a database snapshot takes five hours. If each test case
requires loading a database snapshot, the loading alone needs 100
hours. Thus, reducing the number of database snapshot loads is a
major issue.
Scheduling test cases to reduce the number of loads is broadly
discussed and solved for black-box testing using one testing
database snapshot respectively one database test state [16]. The
problem is also relevant for white-box testing. White-box testing
can benefit from semantically richer test case specifications. They
allow additional optimizations. Also, one testing database state
might not be sufficient. Banks charge their customers certain fees
at the end of each quarter, other at the end of the year. To check
whether the accounting takes place correctly, one has to check the
balance sheet calculations at the end of a quarter and also after
end-of-year processing. Two test case states are necessary.
Thus, following our philosophy of elaborating the broad range of
challenges for DBAP testing, we describe a test case scheduling
task for white-box testing by introducing the concept of a test case
schedule and input correct test schedules while considering the
semantics of white-box test cases before we formulate the
optimization task. Therefore, we focus on shallow test cases,
which rely especially on a coherent system with consistent data.
A formalization of test case scheduling requires the concept of a
test schedule. A test schedule S is a sequence of actions. Each
action either executes a test case or loads a database snapshot. All
test cases are executed at least once.
Definition (Test Schedule): Let TC={TC1, TC2,…TCn} be the test
case set and L={L1, L2,…Lm} be actions for loading database
states Σ1, Σ2,…Σm . Let tci↵aj denote that action aj represents the
execution of a test case tci. Then a test schedule S is a pair
< A,<a > with the actions A to be performed and ,<a defining the
execution sequence with the following side conditions:
∀a∈A:a∈TC∪L, ∀tc∈TC :∃a∈A:tc↵a.
If the database state before the execution of a test case is not the
intended one (that is, it is not execution-path compliant), a
different path is executed than the one intended. The concept of an
input correct test schedule addresses this topic. Let TC1 and TC2
be two test cases with the constraint sets ΣI1

*, ΣI1
+, ΣO1

respectively ΣI2
*, ΣI2

+, and ΣO2. We denote the state after the
execution of TC1 with ΣA. Remember that ΣI1

+, ΣI2
+, and ΣA are

usually not explicitly specified constraints for complex DBAPs
but are implicit definitions based on database snapshots.
Whether test case TC2 can be executed without loading a database
state depends on the relationship between ΣA and ΣI2

* respectively
of ΣA and ΣI2

+.

• Relationship ΣA and ΣI2
*: ΣA and ΣI2

* are database states, i.e.
implicitly defined constraint sets. Without loading the test
state, we can only reason about the possibility of executing
TC2 after TC1 without knowing the state after the execution
of TC1 for certain cases. If ΣO1⇒ΣI2

* holds, we know we can

execute TC2 directly after TC1. If ΣO1∪ΣI2
* is inconsistent,

we must not. We cannot decide a priori otherwise. However,
the assumption is always that the execution of test case TC1
succeeded.

• Relationship ΣA and ΣI2
+: Both sets are implicitly defined.

We cannot reason anything a priori. After we have executed
TC2 and the test case succeeded and we know from a trace
that the right path has been executed, then, and only then, ΣA
implies ΣI2

+ (and even ΣI2
*). Therefore, we write ℜ(ΣB(TC1),

TC1, TC2) with ΣB(TC1) being the system state before the first
test case has been executed. Certainly, information about ℜ-
conditions should be managed such that the optimization
improves over time as described for black-box testing [16].

An input correct test ensures that test cases are executed with a
correct database state, either by loading the corresponding
database state before the execution or by ensuring that the
execution took place under the ℜ-condition. The ℜ-condition can
be known due to previous executions (learned and stored
information). Otherwise, the condition can be checked only a-
posteriori. Thus, the schedule might contain test case executions
with inadequate prior states. However, at least one execution for
each test case must be executed with a correct input state.
Definition (Input Correct Test Schedule): Let S be a test
schedule. Let TC be the set of test cases to be executed. Let ai-1
denote the action in S executed before ai. Then we define the input
correctness ℑ(S) of schedule S as follows:
 ℑ(S)⇔∀tc∈ TC:∃ai∈A: ai↵ tc∧[(ai-1=Lj∧Lj= ΣIi

+∧Lj⇒ΣIi
*)∨

 (ℜ(ΣB(ai-1), ai-1, tc))]
The optimization task is finding a schedule with minimal
execution time for a given test case set. The optimal schedule can
be found only if full ℜ-condition knowledge exists. However, it is
more important to find a suitable scheduling algorithm that is able
to find a useful (but not necessarily perfect) schedule with less
than complete knowledge and considering many database states
and exploiting the semantics of white-box test cases.

9. DISCUSSION AND OUTLOOK
The sheer number of DBAPs on the market contrasts with the lack
of tools for and basic understanding of testing DBAPs. Our
contribution is to compile all relevant aspects of a complete
testing process, including correctness criteria, test case types, and
scheduling problems. Our process-oriented perspective helps
practitioners identify at which steps they can improve their
software testing process. Furthermore, they can develop an
intuitive understanding of DBAP-specific testing risks such as
data parallelism coverage and test data compliance. Researchers
benefit from the terminology covering much of the currently
highly fragmented research area.
The presented problems and challenges (often only solved with
many restrictions) point out the questions currently unsolved.
They might be a good starting point for future research. We see
two main needs. Firstly, ready-to-use tools for automatically
identifying shallow test cases would be a major improvement.
Test cases should incorporate a corresponding database state as a
complete database snapshot, but also as a constraint set. The
constraint set could be used to check whether a given database
state might be used as well. Secondly, deep test case identification
is highly relevant, including a tool for generating varied test data.
Even more useful would be visualizations: one for the relationship
between terms in SQL statements and the result

(changed/unchanged by a statement or selected by the query or
not) and one of how two statement versions influence the rows
affected by the statement. Thereby, the emerging field of testing
DBAPs could influence and improve mainstream software
development.
Acknowledgements. The author would like to thank Michael
Mlivoncic for the valuable discussions.

REFERENCES
[1] Haller, K.: Data Migration Project Management and

Standard Software – Experiences in Avaloq Implementation
Projects, DW 2008 Conference, Lecture Notes in Informatics,
St. Gallen, Switzerland, 2008

[2] Haller, K.: Towards the Industrialization of Data Migration:
Concepts and Patterns for Standard Software Implementation
Projects, 21st Int. Conf. on Advanced Information Systems
(CAiSE'09), 2009, Amsterdam, The Netherlands

[3] Zhu, H., Hall, P. May, J.: Software Unit Test Coverage and
Adequacy, ACM Computing Surveys, Vol. 29 (4), 1997

[4] Graham, D., et al.: Foundations of Software Testing,
Thomson, 2008, London, UK

[5] http://www.ibm.com/software/awdtools/purifyplus/
[6] Willmor, D. and Embury, S.: Exploring Test Adequacy for

Database Systems, 3rd UK Software Testing Research
Workshop (UKTest), 2005, Sheffield, UK

[7] Suárez-Cabal, M. J. and Tuya, J.: Using an SQL coverage
measurement for testing database applications, SIGSOFT,
2005, Newport Beach, CA

[8] Grant, J.: Null values in SQL, SIGMOD Record, Vol. 37 (3),
September 2008

[9] Chays, D., et al.: An AGENDA for testing relational
database applications, Software Testing, Verification, and
Reliability, Vol. 14(1) , 2004

[10] Willmor, D. and Embury, S.: An Intensional Approach to
the Specification of Test Cases for Database Systems, 28th
Int. Conf. on Software Engineering, 2006, Shanghai, China

[11] Deng, Y., Frankl, Ph., Chays, D.: Testing Database
Transactions with AGENDA, 27th International Conference
on Software Engineering (ICSE), 2005, St. Louis, MO

[12] Binning, C., Kossmann, D., Lo, E.: Towards Automatic Test
Database Generation, IEEE Bulletin on Data Engineering,
Vol. 31(1), 2008

[13] Binning, C., et al.: MultiRQP – Generating Test Databases
for the Functional Testing of OLTP Applications, 1st
International Workshop on Testing Database Systems, 2008,
Vancouver, Canada

[14] Chays, D., et al.: A Framework for Testing Database
Applications, International Symposium on Software Testing
and Analysis (ISSTA), 2000, Portland, OR

[15] Willmor, D. and Embury, S.: A regression test selection
technique for database-driven applications, 21st Int. Conf. on
Software Maintenance (ICSM), 2005, Budapest, Hungary

[16] Haftmann, F., Kossman, D., Lo, W.: A Framework for
Efficient Regression Tests on Database Applications, VLDB
Journal, Vol. 16 (1), 2007

