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ABSTRACT 
White-box testing is an important part of every software testing 
and quality assurance strategy. Testing database-driven 
applications requires the adoption of white-box testing, but it is 
not clear what adoption is needed. Instead of focusing on a single 
problem and a possible solution, this paper elaborates all of the 
main challenges from a practitioner’s view. Starting with a 
generic testing process, we analyze for each process step whether 
and, if so, which adoptions are needed, and redefine the concepts 
of test cases and coverage. We discuss test database state 
generation methods and the problem of scheduling test cases 
efficiently. Thereby, we provide a road map for the emerging 
domain of testing database-driven applications and for making 
such testing useful for commercial software development.   

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification, 
D.2.5 [Testing and Debugging]: Testing tools, coverage testing, 
H.0 [GENERAL] 

Keywords 
Information Systems, Databases, Testing, Test Coverage 

1. MOTIVATION 
After decades of software development practice, companies can 
still differentiate from competitors by the reliability of their 
products. Testing is a key issue in reliability and quality 
assurance. However, the specifics of tests for database-driven 
applications (DBAPs) are too often neglected because there are no 
clear guidelines and tools for such tests. To address this challenge 
and thereby improving our software testing process, we decided to 
focus first on the DBAP specifics of white-box testing. In general, 
white-box testing is an attractive option because it allows 
identifying test cases automatically. Our discussion is based on 
our experience in two application areas: PL/SQL script 
development for data migration purposes [1][2] and software 
development in the area of credit ratings in commercial banking. 
We structure our presentation as follows: Section 2 provides an 
overview of the different testing approaches and tasks in the 
testing process. Specific challenges of DBAPs are the focus of 

Section 3. Section 4 focuses on test coverage issues. Section 5 
analyzes correctness criteria and test cases for DBAPs. We 
continue with how to generate test data (Section 6), how to select 
test cases for regression testing (Section 7), and how to schedule 
test cases efficiently (Section 8). We conclude our paper with a 
short discussion and outlook (Section 9). 

2. TESTING TASKS AND APPROACHES 
There are many reasons for testing DBAPs. For example, load and 
performance tests check how a DBAP performs if the DBAP is 
used concurrently by many users. Source code inspection might 
try to identify potential security leaks. In this paper, we are 
interested in the functional correctness of a DBAP: whether it 
returns the specified results. Functional testing approaches are 
grouped into three types: experience-based, dynamic, and static. 
Experience-based testing relies on the know-how of testers and 
users. Static tests inspect the code without executing it, e.g., to 
find variables read but not initiated before. Dynamic testing 
invokes the application and checks whether it returns the expected 
results. The two main dynamic testing approaches are white-box-
testing and black-box-testing. Black-box testing identifies test 
cases without looking at the source code but by analyzing the 
specification. White-box-testing analyzes the source code, e.g., to 
identify possible execution paths and parameter sets for the 
invocation to ensure that the intended execution path is taken. [3]  
The testing process for DBAPs (Figure 1) consists of three phases: 
preparation, execution, and evaluation. The preparation phase 
comprises the test case identification task and the test data (state) 
generation task. The execution phase consists of three tasks. The 
first task is selecting the relevant test cases for regression tests. 
Executing only “needed” tests lowers costs. Secondly, test cases 
should be executed in an optimal order to prevent the need for a 
new database state to be loaded for each test case. Thirdly, it is 
important to log the execution so that failures can be analyzed 
more easily. The evaluation phase is formed by the interpretation 
of test results and the clean-up of the database. In this paper, we 
concentrate on the tasks requiring an in-depth discussion – all but 
the evaluation and logging tasks. 

Figure 1: The Testing Process: Phases and Tasks 

3. CHALLENGES 
With so much existing work on testing, it is important to start with 
identifying the challenges specific to DBAPs. Therefore, we rely 
on a generic DBAP model (Figure 2). In the upper section, a 
procedure symbolizes the application. The procedure has input 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DBTest’09, June 29, 2009, Providence, Rhode Island, USA. 
Copyright 2009 ACM 978-1-60558-706-6/09/06...$5.00. 

Execution
• Test Case Selection
• Test Case Scheduling
• Logging

Evaluation
• Interpretation
• Clean Up

Preparation
•Test Case Identification
•Test Data/State Generation



and output parameters and uses transient variables. The procedure 
contains embedded SQL statements that access the database. The 
SQL engine executes the statements, thereby accessing the 
database tables. We identified four DBAP-specific challenges. 
Challenge 1 (State Challenge): Testing stateless applications 
means invoking a procedure and checking whether it returns the 
specified values. DBAPs additionally interact with a database, 
which stores data such as account balances persistently (Figure 2 

). Thus, test cases must also specify the database state before 
test case execution and the expected state afterwards.  
Challenge 2 (Language Layers Challenge): A DBAP can access 
a database in different ways. Firstly, many databases provide a 
programming language and execution environment, such as 
Oracle with PL/SQL. Secondly, the programming language used 
for application programming might provide a library such as 
JDBC for database access. Finally, there are persistency 
frameworks, such as Hibernate. In all cases, there are two layers 
involved: a “normal” programming language and the database 
access specification. The coupling and interplay of the two layers 
requires special attention ( ). 
Challenge 3 (Data Parallelism Coverage Challenge): SQL (or 
XQuery) are set-oriented and inherently carry data parallelism. 
Executing the SQL statements means accessing, evaluating, and 
potentially changing many rows in parallel ( ). This requires 
rethinking coverage criteria for DBAPs. 
Challenge 4 (Dynamic Code Challenge): The Java reflection API 
allows modifying code at run-time. It is rarely used. In contrast, 
SQL statements are often constructed on-the-fly in DBAPs. This 
causes difficult problems in general which are outside of the focus 
of this paper.   

Figure 2: Generic DBAP Model 

4. DATA PARALLELISM AND COVERAGE  
The quality of test case sets depends not on their size, but on their 
variety. Variety means that different situations and different parts 
of the application are tested. In literature, the standard term is 
“coverage”, inspired by the aim of covering all code parts and 
conditions to be tested [4]. Our discussion is based on the control-
flow-based coverage criteria [3]. In short, these criteria represent 
an application as a directed graph. Test cases are execution paths 
between the start node and the end node. Nodes are (linear) 
statement sequences. Edges between nodes are transitions taken if 
the condition of the edge is fulfilled. Coverage criteria decide 
whether a set of test cases provides sufficient variety. Three main 
coverage criteria exist: statement coverage (each node/statement 
sequence is executed at least once), branch coverage (each edge is 
used at least once), and path coverage (each possible path from 
the start node to the end node is taken). 
Commercial tools like IBM Rational PurifyPlus [5] allow, for 
example, checking whether all application code has been 
executed. To our best knowledge, there is nothing comparable for 

DBAP coverage criteria, though much effort has been put into 
identifying suitable criteria. Suggestions are to check whether all 
tables are accessed, whether all embedded SQL actions have been 
executed, or whether the flow of data items between different 
SQL statements is tested [6]. A different approach concentrates on 
the coverage aspect of single SQL statements and the terms in 
their WHERE clause respectively their JOIN conditions [7].  
Again, we find research concentrating either on complete 
execution paths or on single statements only. Each concept is too 
radical to be used alone in practice. The crucial but not obvious 
point is the data parallelism coverage challenge and the involved 
effort. We illustrate this in a short example. Let us assume that a 
bank sends small Christmas presents to customers with bank 
accounts containing at least 20’000 EUR or to everyone they 
know who turned 18 or 65 during the year. This translates into the 
following selection criterion: 
SELECT p.customerid 
FROM  t_persons p  

LEFT OUTER JOIN t_account a 
ON p.customerid=a.customerid  

WHERE  YEAR(p.birthday)-YEAR(%TODAY)=18 OR 
YEAR(p.birthday)-YEAR(%TODAY)=65 OR  
a.balance>19999 

The statement has three terms in the where clause (e.g., 
a.balance>19999) and one term in the join condition 
(p.customerid=a.customerid). There are two obvious 
coverage criteria: 
a) Elementary query complexity fulfillment: There is at least 

one row or row combination such that all where-terms are at 
least once true and once false.1 Join conditions must be 
satisfied at least once and at least once not. 

b) Complete query complexity fulfillment: There is at least 
one row combination row for each possible combination of 
term results. If there are terms t1 and t2, there shall be at least 
one row for which t1 is true and t2 is true, one row for which 
t1 is false and t2 is true etc. Join-conditions have five 
situations to be considered: (I) ANY X/THE SAME X, (II) 
ANY X/ANY Y, Y≠X, (III) NULL/NULL, (IV) ANY X 
/NULL, (V) NULL/ANY X. 

Figure 3 provides a short example. The upper of the three sections 
shows two tables with sample data. The middle section consists of 
a view of a full outer join of the tables involved in the join. The 
lower section addresses the fulfillment aspect. Elementary 
fulfillment is straightforward. Each term of the WHERE clause 
referencing attributes of T_ACC respective of T_PERS 
corresponds to a row in the fulfillment table in the lower part (A, 
B). If the attribute “Fulfilling rowid” contains a row id, there is at 
least one row in table T_ACC respectively T_PERS covering this 
case. Next, all join conditions of the query should be fulfilled at 
least once by the row combination (C). The complete fulfillment 
table is much more complex. There is one column for each term 
or join condition (X) and all possible combinations have to be 
considered (Y).   
                                                                 
1 We informally use the term “row combination”. It is a 

combination of different rows involved in joins. Thus, a row 
combination row is a row of the full outer join of all involved 
tables. Certainly the NULL case requires special attention, as a 
recently emerged discussion shows [8]. However, this question 
is not a main concern for this paper. 
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Elementary fulfillment has linear complexity in terms of needed 
test cases (the sum of twice the number of selection terms and join 
conditions), but covers only a few interesting cases. Complete 
fulfillment looks preferable, but has exponential complexity. The 
complexity prevents its usage in practical software engineering. 
DBAPs usually have hundreds of much more complex queries. 
Even having sample data for each row of the complete fulfillment 
table is not enough. It is manual work to decide for each row 
whether it should be in the result set.  
The only way we see to address the fundamental dilemma of 
DBAP testing, the sheer amount of data and manual work needed, 
is to identify the complex and risky statements (respectively 
statement sequences). Each of them is tested on its own 
considering query fulfillment coverage. Additionally, there are 
normal unit-testing test cases like invoking procedures. They 
focus on execution path aspects. So, we have two test case types 
complementing each other. The following section discusses them 
further by introducing the terminology of “deep” and “shallow” 
test cases. 

5. CORRECTNESS AND TEST CASES 
The standard approach for evaluating the functional correctness of 
stateless functions is based on (stateless) test cases. A stateless 
test case consists of the procedure to be tested, input parameter 
values, and the expected output parameter values.  
Definition (stateless test case): A stateless test case TCSL is a 
triple TCSL=< ρ, ΠI, ΠO> consisting of the procedure ρ to be 
invoked, input parameter values ΠI, and the expected output 
values ΠO. 
DBAPs require a modified correctness criterion and an adopted 
test case concept. Table 1 compiles the different correctness 
criteria. They are mostly extractions from previously published 
works of different authors. However, understanding the 
similarities and differences between them is a major step for 
understanding why so much different work exists on DBAP 
testing. 
We name the first DBAP correctness criterion schema 
correctness. Schema correctness means that the schema reflects a 
specification and the real world correctly, as intended. In other 
words, the data model is defined correctly and implemented 
accordingly. A second criterion is data conformity correctness. 
This criterion assumes that there are two kinds of constraints: 

those enforced and those not enforced by the database schema.2 
Data conformity correctness checks whether DBAP data violates 
the latter constraints. Chays et al. [9] identified this criterion and 
provided a solution. 
In our software development projects, a third criterion is the most 
relevant: application correctness. This criterion is based on test 
cases. We distinguish two types: shallow test cases and deep test 
cases. Deep test cases focus on the data and data manipulation, 
e.g., of the correctness of a sequence of SQL statements 
calculating the interest rates for bank accounts. Shallow test cases 
are on a higher level. They concentrate on the execution of 
complete execution paths. A sample execution path is the end-of-
year processing of a bank. First, the process invokes the 
calculation of interest payments and ensures that the payments are 
booked. Then it invokes a service to make out the balance sheet.  
More precisely, a shallow test case invokes a procedure ρ with 
given input parameter values ΠI and constraints ΣI defining the 
database state before the invocation. The constraints can be a set 
of rows (or even all rows) which must be in the database tables, 
but can also include requirements such as the existence of at least 
one account for customer 505 or constraints regarding the 
database and session configuration (e.g., date to char conversion 
rules or isolation levels). After the execution of the procedure, the 
output parameter values ΠO are checked against the values stated 
in the test case specification. In addition, the database state is 
checked to determine whether it fulfills the constraints ΣO defined 
to be valid after the execution of the test case.  
This test case and correctness model was introduced by Willmor 
et al. (see e.g. [10]). It is sufficient for small applications. 
Complex systems such as core-banking platforms have different 
needs. It is not sufficient to state that the balance of account 
554887 is CHF 1’000 and that the interest rate is 2.5%. Complex 
systems require seed data. Accounts must have an owner. Interest 
payments for customers imply corresponding bookings on internal 
expense accounts etc. A practical useful input database definition 
has two parts. Firstly, there are hard requirement like “balance of 
account 554887 is CHF 1’000.” Secondly, there is a suggestion 
for a sensible overall database state like “take the database 
snapshot of January 3rd at 8 p.m.” However, other states might 
work as well. Distinguishing between hard entry constraints ΣI

* 
(the account balance) and suggested entry constraints ΣI

+ (system 
state as of January 3rd) gives additional freedom for scheduling 
test cases. We take advantage of this distinction in Section 8.  

                                                                 
2 It is important to be aware that the term constraint has two 

meanings in this paper. Firstly, there are DB constraints such as 
NOT NULL. Secondly, constraints can be first or second order 
logical expressions such as, “there is a customer with ID 505”. 
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Figure 3: Coverage Fulfillment Example 

 Criterion Focus 
1 Schema 

Correctness 
Implemented schema reflects real-
world (and data model) 

2 Data Conformity 
Correctness 

Data reflects not-schema-enforced 
constraints of the data model 

3 Application 
Correctness (AC) 

Results as defined in test cases 

3a - Deep AC Table contents after one or more 
SQL statements 

3b - Shallow AC Return values and side-effects in 
DB after complete execution path 

Table 1: DBAP Correctness Criteria



Definition (shallow test case): A shallow test case TCS is a 6-
tuple TCS=< ρ, ΠI, ΣI

*,  ΣI
+, ΠO, ΣO> consisting of the procedure 

ρ to be invoked, input parameter values ΠI, explicit constraints ΣI
*
  

for the starting database state, implicit constraints ΣI
+ for the 

starting database state, the expected output parameter values ΠO,, 
and the expected resulting database state ΣO . 
Shallow test cases precisely specify an expected end-to-end test 
case. They are expensive to generate and maintain, especially if 
there is no tool support. To limit their number (and thereby effort 
and costs), they should be used only for crucial functionality and 
not for checking minor variants of calculations. 
Deep test cases form the second test case type for DBAPs. This 
idea is based on work on the AGENDA framework [11]. An 
application is a sequence of one or more set-oriented statements 
such as UPDATE, DELETE, or SELECT. The statements can 
access one or more tables. Deep test cases consist of the 
statements and two constraint sets. The first (qualifying) 
constraint set ΣQ defines the data for which the test case is 
applicable. The qualifying constraints are evaluated for each row 
before the sequence of statements is executed. Afterwards, all 
rows that fulfilled the qualifying constraints are checked against 
the second (evaluation) constraint set ΣE. Rows fulfilling the 
qualifying constraints, but not the evaluation constraints, are 
failures. 
Definition (deep test case): A deep test case TCD is a triple 
TCD=< σ, ΣQ, ΣE> consisting of a sequence of statements σ to be 
performed, the qualifying constraints ΣQ, and the constraint set ΣE 
defining which constraints the qualifying rows must fulfill after 
the execution of σ. 
To give a short example: A test case shall check the correctness of 
the interest bookings for all Swiss Francs savings accounts. The 
interest rate shall be 0.75%. We assume that one table stores all 
customer accounts and their actual balances. The deep test case is 
constructed as follows: All booking statements together form σ. 
The qualifying constraints ΣQ are (i) that the account type must be 
savings and (ii) that the currency must be CHF. The evaluation 
constraint set ΣE demands that the account balance has been 
increased by 0.75%. 
Deep test cases operate on large data sets. They are helpful for 
complex statements used for batch-operations such as interest 
payments during the end-of-year processing. Deep test cases can 
check different variants of transformations and calculations 
concurrently. One might imagine using them to check the interest 
bookings on not only Swiss Francs savings accounts but on all 
accounts by simply adding additional deep test cases. This is 
much cheaper than setting up many shallow test cases where 
suitable accounts must be identified or created and maintained. 
However, it is crucial for deep test cases to have “varied” data. 

6. TEST CASE DATA ENGINEERING 
Test case identification corresponds to the construction of 
constraint sets. Constraint sets ensure the execution of certain 
execution paths (shallow test cases) or guarantee a certain data 
parallelism coverage criterion (deep test cases). The next step is to 
populate the database with fitting data. Some research prototypes 
exist [10][12], but there are no tools for commercial DBAP 
development. Thus, we elaborate the consequences for the testing 
process if the database state is not optimal. 
Usefulness of a database state is expressed by four compliance 
levels: type compliance, schema compliance, application 

compliance, and path compliance. Type compliance demands only 
that test data to be inserted into tables conforms to the attribute 
types the columns have, e.g., only numbers are inserted into 
NUMBER columns. Schema compliance requires additionally that 
all rows respect the schema constraints (NOT NULL, primary-
foreign key constraints, etc.). If data is not schema compliant, the 
database refuses it. Thus, each database state loaded successfully 
in a database is guaranteed to be schema compliant. Application 
compliance is the third level. Applications do not write and 
process all schema-compliant data. A core-banking system could, 
for example, prevent negative balances on saving accounts by 
implementing conditions in the DBAP code for withdrawals and 
money transfers, but there are no corresponding schema 
constraints. Application compliance demands that test data 
contains only data that could only be inserted and processed by 
the DBAP. Finally, path compliance assures that the data is the 
right data for executing a certain execution path. If the path 
requires account 1774552 to have a balance over CHF 100’000, 
path compliance guarantees it. 
Figure 4 illustrates the compliance level hierarchy. Cells of the 
matrix represent database states (we abstract from input 
parameters here). All cells together form the universe of possible 
database states. A cell can represent data that cannot be loaded 
into the database because it is not schema compliant ( – ). A cell 
can also indicate that its execution does not identify a failure 
(  ), indicate a false positive ( ↓ ) or a failure (  ). False-
positive means that testers seem to find a failure, but the failure 
does not appear in normal application usage. The only reason for 
this is that the application is used in an unspecified way. For 
example, if a closed savings account is defined as having a 
balance of zero, the application code can assume this without 
checking it. So if the test data contains closed saving accounts 
with a negative balance, the application might react unexpectedly. 
Thus, test data must be at least application-compliant to prevent 
false-positives. 
The first goal of testing is to find all failures. A failure in the 
application code can be detected with different test data 
constellations. Cells in Figure 4 with “ ” allow us to identify one 
of two failures, one represented by a white background color, the 
other by a dark grey one. Finding all failures demands the 
execution of one test case per execution path. If we execute each 
test case with path compliant data, we find all failures. If we do 
not have the right data, we do not know (at least not a priori) 
which execution path we finally execute. Instead of executing 
path A, which assumes five rows in a table, we might take path B 
because the table is empty. If each execution path is not executed 
at least once, this is a risk for software quality. 
Finally, we take a closer look at the approaches for data 
generation and the compliance level they assure: 

• Tester defined. A tester manually specifies the test data, e.g., 
after a code analysis. Thereby, she can ensure path-
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compliance. This approach is useful for a few test cases and 
small data sets. 

• Schema-derived. Schema definitions restrict the data that can 
be stored in the table by constraints such as primary-foreign-
key-constraints or NOT NULL-constraints. Collecting all 
constraints from the database catalog allows the generation 
of schema-compliant data. 

• Path-derived. Execution paths might require certain data in 
the database to be defined by constraint sets. A constraint 
solver solves the constraints and thereby generates path 
compliant test data automatically. Prototypes with limitations 
exist [7][10], but we are not aware of any suitable tool for 
commercial DBAP development projects. Furthermore, 
Muli-RQP [13] is a convincing approach for generating test 
database states based on declarative test case specifications. 

• Live-data. DBAPs in use have live-data in their databases. 
Live-data is always application-compliant (at least for the 
current version of the application). Some authors argue 
strongly against using live-data [14]. We have learned during 
many projects that using live-data is the cleverest thing one 
can do, especially for deep test cases. For shallow test cases 
it might require much manual work to determine that account 
10008 and not account 10009 is useful for a certain test case. 

7. TEST CASE SELECTION FOR 
REGRESSION TESTS 
When a new application is tested for the first time, it is sensible to 
execute all test cases. It is sensible to execute all tests before a 
major release of a DBAP is shipped to customers, too, but only if 
the test case set is not too large. However, in most cases 
regression testing is the only choice for cost reasons. Regression 
testing executes a test case again only if the application has been 
changed and the change might affect this test case [4]. Reasoning 
about the potential effect requires (a) analyzing how the 
application has changed and (b) identifying how changes are 
linked to test cases. Regression test case selection analyzes the 
source code to find changes in the case of stateless applications 
and determines the affected execution paths respective to the 
corresponding test cases. Willmor and Embury were the first to 
rethink regression test case selection for DBAPs [15]. In our 
paper, we want to complement their work with a discussion 
structured by the different DBAP components and DBAP data: 

• Application code. If we change the application code, there is 
a need for retesting the DBAP. 

• Database schema. If the size of attributes changes (for 
example, VARCHAR2(100) to VARCHAR2(1000) or to 
VARCHAR2(10)), the application code is unchanged but the 
application might crash nevertheless. Adding new attributes 
can affect e.g. SELECT * FROM T_TAB statements. They 
return more attributes. If a NOT NULL constraint is added, 
inputs that succeeded before might fail. In other words, 
database schema changes usually impact large parts of the 
application. 

• Application data. If a bank adds a new customer to the 
database, there is no need for retests. 

• Metadata. Systems often store metadata such as the account 
products a bank offers. If the application code contains fix 
references, for example, in a workflow (if product_id=500 
then …) for savings accounts, this is obviously bad coding 
practice. But changing the metadata might require regression 

tests. However, distinguishing between application and 
metadata is often difficult. 

8. TEST CASE SCHEDULING 
Test case scheduling is an issue when testing complex and data-
intensive DBAPs such as core banking systems. Restoring 
respectively loading a database snapshot of the complete system 
requires hours even for small or medium-sized banks. Let us 
assume that a regression test executes twenty test cases and 
loading a database snapshot takes five hours. If each test case 
requires loading a database snapshot, the loading alone needs 100 
hours. Thus, reducing the number of database snapshot loads is a 
major issue. 
Scheduling test cases to reduce the number of loads is broadly 
discussed and solved for black-box testing using one testing 
database snapshot respectively one database test state [16]. The 
problem is also relevant for white-box testing. White-box testing 
can benefit from semantically richer test case specifications. They 
allow additional optimizations. Also, one testing database state 
might not be sufficient. Banks charge their customers certain fees 
at the end of each quarter, other at the end of the year. To check 
whether the accounting takes place correctly, one has to check the 
balance sheet calculations at the end of a quarter and also after 
end-of-year processing. Two test case states are necessary.  
Thus, following our philosophy of elaborating the broad range of 
challenges for DBAP testing, we describe a test case scheduling 
task for white-box testing by introducing the concept of a test case 
schedule and input correct test schedules while considering the 
semantics of white-box test cases before we formulate the 
optimization task. Therefore, we focus on shallow test cases, 
which rely especially on a coherent system with consistent data.  
A formalization of test case scheduling requires the concept of a 
test schedule. A test schedule S is a sequence of actions. Each 
action either executes a test case or loads a database snapshot. All 
test cases are executed at least once. 
Definition (Test Schedule): Let TC={TC1, TC2,…TCn}  be the test 
case set and L={L1, L2,…Lm} be actions for loading database 
states Σ1, Σ2,…Σm . Let tci↵aj denote that action aj represents the 
execution of a test case tci. Then a test schedule S is a pair           
< A,<a > with the actions A to be performed and ,<a defining the 
execution sequence with the following side conditions: 
∀a∈A:a∈TC∪L, ∀tc∈TC :∃a∈A:tc↵a. 
If the database state before the execution of a test case is not the 
intended one (that is, it is not execution-path compliant), a 
different path is executed than the one intended. The concept of an 
input correct test schedule addresses this topic. Let TC1 and TC2 
be two test cases with the constraint sets ΣI1

*, ΣI1
+, ΣO1 

respectively ΣI2
*, ΣI2

+, and ΣO2. We denote the state after the 
execution of TC1 with ΣA. Remember that ΣI1

+, ΣI2
+, and ΣA are 

usually not explicitly specified constraints for complex DBAPs 
but are implicit definitions based on database snapshots. 
Whether test case TC2 can be executed without loading a database 
state depends on the relationship between ΣA and ΣI2

* respectively 
of ΣA and ΣI2

+. 

• Relationship ΣA and ΣI2
*: ΣA and ΣI2

* are database states, i.e. 
implicitly defined constraint sets. Without loading the test 
state, we can only reason about the possibility of executing 
TC2 after TC1 without knowing the state after the execution 
of TC1 for certain cases. If ΣO1⇒ΣI2

* holds, we know we can 



execute TC2 directly after TC1. If ΣO1∪ΣI2
* is inconsistent, 

we must not. We cannot decide a priori otherwise. However, 
the assumption is always that the execution of test case TC1 
succeeded.  

• Relationship ΣA and ΣI2
+: Both sets are implicitly defined. 

We cannot reason anything a priori. After we have executed 
TC2 and the test case succeeded and we know from a trace 
that the right path has been executed, then, and only then, ΣA 
implies ΣI2

+ (and even ΣI2
*). Therefore, we write ℜ(ΣB(TC1), 

TC1, TC2) with ΣB(TC1) being the system state before the first 
test case has been executed. Certainly, information about ℜ-
conditions should be managed such that the optimization 
improves over time as described for black-box testing [16].  

An input correct test ensures that test cases are executed with a 
correct database state, either by loading the corresponding 
database state before the execution or by ensuring that the 
execution took place under the ℜ-condition. The ℜ-condition can 
be known due to previous executions (learned and stored 
information). Otherwise, the condition can be checked only a-
posteriori. Thus, the schedule might contain test case executions 
with inadequate prior states. However, at least one execution for 
each test case must be executed with a correct input state.  
Definition (Input Correct Test Schedule): Let S be a test 
schedule. Let TC be the set of test cases to be executed. Let ai-1 
denote the action in S executed before ai. Then we define the input 
correctness ℑ(S) of schedule S as follows: 
   ℑ(S)⇔∀tc∈ TC:∃ai∈A: ai↵ tc∧[( ai-1=Lj∧Lj= ΣIi

+∧Lj⇒ΣIi
*)∨ 

        (ℜ(ΣB(ai-1), ai-1, tc))] 
The optimization task is finding a schedule with minimal 
execution time for a given test case set. The optimal schedule can 
be found only if full ℜ-condition knowledge exists. However, it is 
more important to find a suitable scheduling algorithm that is able 
to find a useful (but not necessarily perfect) schedule with less 
than complete knowledge and considering many database states 
and exploiting the semantics of white-box test cases.  

9. DISCUSSION AND OUTLOOK 
The sheer number of DBAPs on the market contrasts with the lack 
of tools for and basic understanding of testing DBAPs. Our 
contribution is to compile all relevant aspects of a complete 
testing process, including correctness criteria, test case types, and 
scheduling problems. Our process-oriented perspective helps 
practitioners identify at which steps they can improve their 
software testing process. Furthermore, they can develop an 
intuitive understanding of DBAP-specific testing risks such as 
data parallelism coverage and test data compliance. Researchers 
benefit from the terminology covering much of the currently 
highly fragmented research area.  
The presented problems and challenges (often only solved with 
many restrictions) point out the questions currently unsolved. 
They might be a good starting point for future research. We see 
two main needs. Firstly, ready-to-use tools for automatically 
identifying shallow test cases would be a major improvement. 
Test cases should incorporate a corresponding database state as a 
complete database snapshot, but also as a constraint set. The 
constraint set could be used to check whether a given database 
state might be used as well. Secondly, deep test case identification 
is highly relevant, including a tool for generating varied test data. 
Even more useful would be visualizations: one for the relationship 
between terms in SQL statements and the result 

(changed/unchanged by a statement or selected by the query or 
not) and one of how two statement versions influence the rows 
affected by the statement. Thereby, the emerging field of testing 
DBAPs could influence and improve mainstream software 
development. 
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