
The Magazine for Professional Testers

December 2010

IS
SN

 18
66

-5
70

5 
		


w

w
w

.te
st

in
ge

xp
er

ie
nc

e.
co

m
		


fr

ee
 d

ig
ita

l v
er

si
on

		


pr
in

t v
er

si
on

 8
,0

0 
€	

pr
in

te
d 

in
 G

er
m

an
y

Open Source Tools

12

© diego cervo - Fotolia.com



104 The Magazine for Professional Testers www.testingexperience.com

Release Upgrades for Database-Driven Applications: 
A Quality Assurance Perspective

by Klaus Haller

© Spectral-Design - Fotolia.com

1.	 Motivation

The majority of today’s business applications are database-driven 
applications (DBAPs). DBAPs rely on databases for storing and 
processing data. When a vendor plans a new release, business 
analysts, software engineers, and testers collaborate to incorpo-
rate new features and to solve bugs. “The more, the better” is a 
typical slogan. Thus projects often postpone one task for as long 
as possible: the development and testing of upgrades. Upgrades, 
however, are of crucial importance. Customers expect a smooth 
transition to the new release. They do not want to lose any data. 
This demands for high quality assurance standards. In practice, 
however, not only developers but also testers treat upgrades as 
unloved appendices. One reason might be that the literature 
does not provide guidelines. This article fills this gap. It provides 
insights into DBAP upgrades, their risks, and adequate testing 
strategies. 

2.	 Understanding DBAPs and DBAP Upgrades
The article relies on a sample DBAP, a credit risk application, to 
discuss challenges in a practical context. Banks use credit rating 
applications when they decide whether a company gets a loan 

and at which interest rate. Figure 1 provides a simplified model 
of the application. In the middle, there is the current release 8.5, 
release 9.0 is on the right. Shown on the left is a generic DBAP mo-
del. Release 8.5 has two input forms for financial statements. One 
form is for small and medium enterprises (SMEs), one for large 
corporations. The forms provide input fields such as “assets and 
liabilities” and “EBIT”. The business logic calculates the company’s 
credit risk, i.e., the likelihood that the company might not pay 
back the loan, based on the financial statement.

The graphical user interface (GUI) of the application with the 
input forms and the business logic form together the DBAP ap-
plication logic component (Figure 1, left). It runs typically in an 
application/web server (classic application logic). Certain parts, 
e.g. triggers or stored procedures, are in the database (database 
application logic). DBAPs rely on three components for storing 
data persistently in the database. First, there is the table struc-
ture. It defines the data model on the database layer. The tables 
are a kind of container for storing customer and vendor data. Cus-
tomer data is data relevant only for one customer. The financial 
statements in tables T_FINSTATEMENT_CORP and T_FINSTATE-

Figure 1: DBAP components (left) and sample application (release 8.5 - middle - and release 9.0 - right) with GUI (upper part) and financial statement 
input forms (middle and right, upper part) and corresponding database tables (lower part).



105The Magazine for Professional Testerswww.testingexperience.com

MENT_SME are examples. Table T_OUTTEXT stores the GUI names 
and descriptions for the input fields. These texts are shown on the 
GUIs. They are the same for all customer installations. This illust-
rates the idea of vendor data.

Besides release 8.5, Figure 1 incorporates also release 9.0. A DBAP 
upgrade allows switching to the new release, e.g. from release 8.5 
to release 9.0. Release upgrades must overcome the differences 
between the two versions. Release 8.5 has two input forms, one 
for SMEs and one for large corporations. Both forms store their 
data in specific tables. In release 9.0, there is only one input form, 
and one table stores all financial statements. The application lo-
gic changes, too. Also, attributes, tables, and database schemas 
can be added, removed, or modified in a new version. A DBAP up-
grade ensures that the customer can still use his old data with 
the new release.

3.	 Upgrade Correctness
Testing compares observed behavior with behavior defined to be 
correct. In “normal” application testing, the tester uses the ap-
plications and, thereby, enters data into input forms. If the ap-
plication does not crash and the tester sees the expected output, 
the test is successful. Upgrades, and especially DBAP upgrades, 
are different. The upgrade routine must not crash. It should also 
return whether the upgrade succeeds. However, this does not 

mean that the upgrade is correct. An upgrade is only correct, if 
(a) the application works correctly after the upgrade, and (b) the 
old data is preserved and can still be used. This is an intuitive un-
derstanding, but testers need a precise understanding in order 
to test. The term upgrade correctness covers data and applica-
tion component(s) aspects. Regarding most of the components, 
upgrade correctness bases on a comparison. It compares the up-
graded DBAP with a reference installation. A reference installati-
on is an installation of the new release (release 9.0 in our examp-
le). It is an installation as installed by new customers not having 
run any old version. 

In more detail, upgrade correctness has four aspects (Figure 2): 

1.	 The application logic of the upgraded DBAP equals the one of 
the reference installation. This must hold true for database 
application logic (triggers, stored procedures etc.) and the 
classic application logic, e.g., in Java/J2EE.

2.	 The database tables (the data model of the persistent data) 
are the same as for a reference installation.

3.	 The vendor data equals the data of a reference installation.

4.	 The meaning of the customer data is unchanged. In our ex-
ample, all financial statements are still there. Also, their se-
mantics must remain unchanged.

4.	 Upgrade Patterns

Software developers can use various patterns for implementing 
upgrades (see [1] for more details and a theoretical foundation). 
They have different risks. Testers need to understand the patterns 
and their risks for focused tests. This section presents the two 
main upgrade implementation patterns, the rejuvenation pat-
tern and the install & copy pattern.

The install & copy pattern installs the new DBAP version in step 
1 (Figure 2, 1). This is done the same way as for new customers. 
In step 2, the upgrade copies the data from the old installation. 
It transforms the data and loads it into the new installation (2). 
As a result, there are now two installations. One is the old one 
(release 8.5 in our example). It can be shut down and removed 
from the server in step 4. Before that, in step 3, the users switch 

to the second, the new installation. The only upgrade risk of this 
pattern is that the meaning of the customer data might be chan-
ged. All other components (application logic, vendor data, and 
table structure) are installed from scratch. Thus, they are correct 
by definition.

The rejuvenation pattern adopts the application logic. It removes 
obsolete and deploys new Java classes (Figure 2, A). It deletes, 
modifies, or adds database application logic such as triggers and 
stored procedures (B). It modifies database tables and adopts cus-
tomer data accordingly (C). Finally, it updates the vendor data (D). 
So the rejuvenation pattern transforms the old installation into a 
new one. The pattern has various risks. First, the meaning of the 
customer data might change. This risk is the same as for the pre-
vious pattern. Other risks are that the application logic, the table 

Figure 2: Upgrade correctness and upgrade risks



106 The Magazine for Professional Testers www.testingexperience.com

structure, or the vendor data are modified incorrectly. Then, not 
all components of the DBAP equal the reference installation. The 
DBAP is inconsistent. It might return wrong results (e.g., wrong 
credit ratings) or simply crash.

5.	 Understanding DBAP Upgrade Risks
The previous section mentioned briefly the upgrade risks. Three 
are easy to describe. Application logic, table structure, and ven-
dor data must be the same as for a reference installation. If not, 
the upgrade is not correct. Customer data-related risks are more 
complex. They fall into two sub-categories. First, there are two 
data set risks (Figure 4, 1):

•	 Missing data items. One or more data items might get lost 
during the upgrade. There could be twenty financial state-
ments in release 8.5, from which one is missing when the 
bank starts working with release 9.0 after the upgrade.

•	 New data items. The upgrade must not “create” financi-
al statements which did not exist before the upgrade. This 
could happen, e.g. when certain financial statements are du-
plicated unintentionally.

The data item risks deal with the semantics of a single data item, 
e.g. one financial statement. There are three risk types:

•	 Element changed. One or more attributes are changed incor-
rectly. Attributes might get lost during extraction and copy. If 
the upgrade uses an INSERT-SELECT-SQL statement, it might 
not cover all needed attributes (2). This seems unlikely for our 
example with table T_FINSTATEMENTS_CORP or T_FINSTATE-
MENTS_SME. However, if there are one hundred or more 
tables, forgetting one attribute is not so unlikely any more. 
Also, the table structure of the new release can change till 
the last second. This requires changing the upgrade always 
accordingly. Regarding incorrect changes, an example would 
be if the currency for all SME financial statements is not set 
to CHF during the upgrade, but to USD. 

•	 Processed differently. The category field is a good example 
how an additional attribute influences the processing of 
otherwise unchanged data (3). If one copies old financial 
statements for release 8.5 and does not fill up the new at-
tribute CATEGORY, the business logic might use the wrong 
algorithm and calculate wrong credit ratings, or it might 
crash.

•	 Frame change. The data is the same on the database level 
and is (still) correct. However, 
the semantics can change due 
to (slightly) different GUI texts 
(“most recent financial state-
ment” vs. “last year’s financial 
statement” – 4), due to field 
name changes (e.g., “total” 
instead of “EBIT”), or due to 
being linked to a new GUI or dif-
ferently to the existing one (5).

6.	 Testing in Practice

Vendors and customers test for 
different reasons. Vendors want 
to improve the quality of the 
upgrade. It must run with all 
customer installations, even if 
various installations differ sub-

Figure 3: Upgrade patterns with the old version (left), the copy & transform upgrade pattern (middle), and the rejuvenation 
upgrade pattern (right) 

Figure 4: Interpretation-related 
risks: data item risks and data set 
risks



107The Magazine for Professional Testerswww.testingexperience.com

tly. Customer-site tests ensure that the customer company can 
continue working. Companies cannot risk that an ERP system is 
down for a day or two. Banks cannot approve loans without cre-
dit rating. So upgrades are done in maintenance windows. The 
application management tests whether the company can work 
with the upgraded DBAP. If not, it restores the state before the up-
grade. Thus, the business is not affected even if the upgrade fails. 
The good news is that the customer and vendor tests might have 

different objectives, but the needed techniques overlap.

The DBAP upgrade risks are the base for deriving the techniques 
and strategy for testing DBAP upgrades. They guide the testers 
when preparing test plans and running tests. Table 1 compiles 
a DBAP upgrade test strategy. It links the risks to the tasks to be 
performed. It states also whether automation is an option for 
vendor-site or customer-site tests. 

Pat-
terns

Risk Type Risk Subtype Test Approach Automation  
(Vendor-site)

Automation  
(Customer-site)

Re
ju

ve
na

tio
n 

on
ly Application Logic Dif-

ferences “Classic” As for normal upgrades

Database Schema comparison

Yes, full automation 
possible

Yes, full automation 
possible

Table Structure Differences Schema comparison

Vendor Data Differences Counting rows/ calcu-
lating hash values

In
st

al
l &

 C
op

y 
an

d 
 

Re
ju

ve
na

tio
n

Data Set Risks
Missing Data Items Reconciliation

New Data Items Reconciliation

Data Item Risks

Element change Checking all represen-
tatives

Questionable cost-
benefit ratio

No (tests only needed 
once)

Frame change Checking all represen-
tatives No Irrelevant

Processed differently Execute all workflows 
with as much data as

Questionable cost-
benefit ratio, option: 
smoke

Part of “normal” tests 
after setting up a 
system

There are the three risks specifically relating to the rejuvenation 
pattern: application logic differences, table structure differences, 
and vendor data differences. The database catalog helps addres-
sing two: database application logic differences and table struc-
ture differences. It contains a list of all existing tables and their 
attributes. The vendor extracts this information from a reference 
installation and incorporates it into the upgrade. At customer-si-
tes, when the upgrade has finished with all transformations, two 
validations take place. The first validation compares (i) the (da-
tabase) application logic and table structure after the upgrade 
with (ii) a reference installation. It queries the database catalog 
of the DBAP for (i) after the upgrade. The information for (ii) is 
incorporated in the upgrade. A second validation checks vendor 
data difference risks. It counts, e.g. the rows per table and calcu-
lates hash values. The vendor benefits from the validations in two 
ways. First, developers get quick feedback during the upgrade 
development. Second, if run at customer-site, the vendor knows 
that the upgrade ran as expected. If the vendor has not conside-
red all nuances of a customer installation, they are either detec-
ted by the checks, or they are irrelevant. If upgrade problems are 
not detected early, this can ruin the vendor reputation. Without 
remote access to the customer environment, the vendor support 
has no chance identifying bugs which are a result of such up-
grade “hiccups”.

Testing data set risks means matching data items of the old and 
new system. Data items without matching counterparties indi-
cate errors. It is like looking for a (missing or an dditional) needle 
in a haystack. It is not about whether the needle head is blue or 
red. The checks do not consider any semantics. So automation is 
an option. A reconciliation is the technical solution. A reconcili-
ation is a list comparing, per table, identifiers before and after 
the upgrade as Table 2 illustrates. The top four rows contain rows 
about loans. They are identified by their IDs. There are no matches 

for account 200540. It exists only in the new version. Contrary, ac-
count ID 755543 exists only before the upgrade. 

In practice, a reconciliation must consider three advanced as-
pects:

•	 Certain data items are not relevant for upgrades, e.g. logs. 
Also, if modules or functionality is removed, corresponding 
data becomes obsolete. They are not looked at by the recon-
ciliation.

•	 Changes of the table structure must be addressed. When 
the data of the two tables T_FINSTATEMENT_CORP and 
T_FINSTATEMENT_SME is copied into one table T_FINSTATE-
MENTS, the reconciliation must consider this. The artificial 
table name “OBJ_FINST” reflects this. It is used for elements 
in all three tables.

•	 If a table has no identifier, a good one can often be construc-
ted by concatenating attributes, e.g. a company name and 
the balance sheet total in the example.

The data set risks are so crucial that vendors must address them 
during their tests. In case of business-critical applications, cus-
tomers (or their auditors) might insist on such checks when the 
upgrade takes place at customer-site. Thus, the vendor should de-
sign a reconciliation as delivery object for the customer and run 
them after/with each upgrade. The concept of a reconciliation is 
discussed in more detail in [2], e.g., on how to integrate more at-
tributes.

Risks which involve semantics are difficult to automate. They de-
pend on human testers. This applies to two data item risks, the 
element change risk and the frame change risk. They are done 
at customer-site and vendor-site. Obviously, it is not possible to 
check every data item, but only a small selection. Thus, it is impor-
tant to choose representatives. Testers must have a list of the ty-

Table 1: DBAP Upgrade Test Strategy



108 The Magazine for Professional Testers www.testingexperience.com

Klaus Haller studied computer science 
at the Technical University of Kaisers-
lautern, Germany. He received his Ph.D. 
in databases from the Swiss Federal 
Institute of Technology (ETH) in Zurich, 
Switzerland. Klaus has worked now 
for more than five years mainly in the 
financial industry. His focus is on infor-
mation system architecture & manage-
ment and business-IT alignment.

Biography

pes of data items in the system, e.g. financial statements, customers, loans, 
etc. If there are subtypes with different behavior or processing, e.g. financial 
statement of a SME company versus financial statements of large corpora-
tion, this must be considered. Then, testers choose representatives for each 
data item type. The more complete and varied the set of representatives, the 
likelier it is that failures are detected. Practical experience proves, that all 
attributes of all input and output forms must be covered at least once.

Testers compare the data before and after the upgrade manually. They print 
out the relevant data before the upgrade and compare the print-outs with 
the data in the upgraded DBAP. In case of the install & copy pattern, testers 
can also log into the old and the new systems simultaneously. Then, they 
compare the data items by opening the relevant forms in both systems. This 
takes time, i.e. it is an expensive task. Especially for the upgrade develop-
ment project, recurrent element change tests might be automated. This re-
quires test data in the old installation, which is tested at GUI level after the 
DBAP upgrade. There is no such option for frame change tests.

The processed differently risk is trivial when one is aware of it. However, 
at the very end of a project, a tester had compared all representatives tho-
roughly. There was not a single error left when looking at the data in the GUI. 
By chance, one developer pushed a button starting some data processing of/
with the upgraded DBAP. The whole application crashed immediately. The 
reason was a new mandatory attribute in a table. The GUI presented a de-
fault value if the attribute was missing. The application logic crashed. This 
illustrates that all workflows should be executed respectively tested at least 
once by a tester manually. Then, the tester can also check whether the retur-
ned results are as expected. This approach turned out to be highly effective. 
In case of longer upgrade projects, implementing smoke-tests for all impor-
tant workflows can speed up the development process. 

***

Developing and testing upgrades are crucial for customer satisfaction, 
especially for DBAPs. Customers expect, first, that the application runs as 
smoothly as before the upgrade. Second, all data must (still) be available. 
This is challenging. After reading this article, testers should understand 
three aspects better. These are, first, the DBAP upgrade patterns, second, the 
risk associated with the upgrade patterns (precisely: data set risks and data 
item risks), and, third, what kind of tests are needed. This knowledge makes 
testing DBAP upgrades more focused, more effective, and, hopefully, more 
fun.

References
[1]	 K. Haller: On the Implementation and Correctness of Informati-
on System Upgrades, International Conference on Software Maintenance 
(ICSM), 12-18 September, Timișoara, Romania

[2]	 K. Haller: Data Migration Project Management and Standard Soft-
ware, Data Warehousing 2008: St. Gallen, Switzerland

Table 2: Reconciliation


