
Information System Maintenance Costs: The „In-between“ Challenge
Klaus Haller, COMIT AG, Pflanzschulstr. 7, CH-8004 Zürich, Switzerland, klaus.haller@comit.ch

Abstract. Many of today’s information system products
(ISPrs) have a small customer base of maybe five to ten
or twenty customers. This puts the vendors into a
dilemma. The ISPrs share much of the complexity of mass
products, but the vendors cannot afford similar
maintenance cost structures. This paper provides
guidelines for vendors in such a dilemma. Therefore, it
analyzes how the ISPr product version management
influences support and upgrade development costs.
1. Motivation
“I’m not a girl, not yet a woman.” This is a Britney
Spears hit from 2001. It is a song about the challenge of
being “in-between”. The majority of commercial
applications today belong also to the group of “in-
between” information system products (ISPr). Neither do
they have a single customer nor are they mass products
such as Microsoft Windows. Three expectations make
“in-between” ISPrs difficult to manage in the middle and
higher market segment:
a) customers expect the flexibility of custom software,
b) they expect mass-marked-like license fees and

maintenance costs, and
c) the vendor expects the economy-of-scales: additional

customers increase the income, but not costs.
This paper addresses the inherent contractions between

the three expectations and how the ISPr product version
management influences them. So we broaden the view for
software maintenance research, which focuses often on
technical aspects (e.g. upgrades for applications not
incorporating databases [1,2]). Existing work on the
organizational challenges of support organizations such as
[3] or the ITIL framework [4] address mainly how to deal
with a single product version. Aim of this paper is to
address ISPrs incorporating databases and look on their
costs when they have an “in-between” customer-base size.
2. Information System Products & Versions
A typical information system has a three-tier-architecture
with a presentation layer, a business logic layer, and a
persistency layer. Another option is understanding
information systems as a triple . represents
the application logic. It can be divided over all three
layers. The database tables, their attributes, and their
primary/foreign key relationships form the object model

. The tables store all data of the database.
An ISPr is an information system with application code

(and certain vendor-delivered data) sold and shipped to
different customers. An ISPr version is–from the product
management perspective–a promise. It is a promise of a
set of features. Prospectus and important customers
influence this set in case of “in-between” ISPrs. The
vendor’s flexibility is often part of the business model.
Flexibility combined with successful sales to new
customers can lead to a sequence of versions: version 1.0,
1.1, 1.2 etc. (Figure 1). Each customer gets a slightly

improved, new version. The success of “in-between”
ISPrs comes with the risk of a version “zoo.”1

The number of installed versions raises further if
customers using the same version find different bugs and
the bugs are patched separately for each customer. To
give an example: customer B and F used version 1.2. Both
found a bug. The bugs has been patched in different fixes
specific for each customer. This results in additional
branches, e.g. in versions 1.2a for customer F and 1.2x for
customer B.

Figure 1: ISPr Product Versioning with development
paths (DEV), upgrade paths (UPG), and deployments to
customer sites
4. Support Organization
A customer triggers the vendor’s support by calling the
support or opening an issue in an incident management
system such as Jira [6] (Figure 2,). First, the support
verifies whether it is really a bug and whether this ISPr
causes the bug and not an applications it is coupled with
(). The support identifies all versions affected by this
bug (). Next, the vendor’s 3rd level support develops a
fix (). The fix can be developed either on the customer
version or the version under development. It must be
merged vice versa in both cases. Also, it must be merged
into all other affected ISPr versions . If the code base
differs in this aspect between the versions, different fixes
might have to be developed. Next, regression tests ensure
the ISPrs overall stability (). Finally, the support ships
the fix to the customers where it is deployed ().

The total support costs are calculated as follows.2 First,
there are the base costs of the support organization,
e.g. for the issue tracking system and ensuring availability
times. All customers cause specific base costs .
They cover the customer specific infrastructure, the effort
needed for each customer’s 1st- and 2nd -level support
requests etc. Then, there are costs for each issue

1 It is not a consequence of the needs of different market
segments as e.g. in product line management [5]. All
customers buy the same product.
2 We use costs in the sense of effort and time. We do not
address labor costs or when additional support staff has to
be hired resulting in a step-wise increase of labor costs.

Figure 2: Bug Fix Process

12. Workshop Software-Reengineering
May 3rd-5th 2010, Bad-Honnef, Germany

(with ॴ denoting the set of all issues). First, issue-specific
costs comprise the costs for identifying all affected
versions (costs ܥউ

ா). Second, there are the costs for fixing
issue উ. They are accumulated over all versions খ א ॽউ
affected by this issue উ. They consist of development (or
merging) costs ܥউ,খ

ி per release and issue and the
regression test costs ensuring the ISPr version’s stability
after applying the fix (costs ܥখ

ோ).
We derive the following support costs formula:

ௌ௨௣ܥ ൌ ஻ܥ ൅ ෍ ঃܥ
஼஻

ঃאԧ

൅ ෍ ቎ܥউ
ா ൅ ෍ ൫ܥউ,খ

ி ൅ খܥ
ோ൯

খאॽউ

቏
উאॴ

The formula provides two main insights: First, the
costs for solving one bug rise (linear) with the number of
deployed ISPr versions at customers’ sites. Second, even
if the costs for fixing an issue are low, there are always
the (usually high) regression test costs for each version
the bug fix is merged into. Thus, a vendor should keep the
number of different versions in use low. If it rises due to
selling “little” improved versions to new customers, all
new customers should be upgraded quickly to a common
ISPr version to reduce the support costs.
5. Upgrade Development
Upgrades allow customers to benefit from new IPSr
versions. It is a simple task for stand-alone-applications
without incorporated database. One removes the old
version and installs the new one. ISPrs, however,
incorporate a database with data (e.g. customer addresses
and orders). This data must be still available after the
upgrade. Further, ISPrs are often incorporated into the
company’s application landscape. Thus, a typical ISPr
upgrade is complex. It comprises of four tasks:
(1) Upgrading the application logic.
(2) Adopting the object model ࣩ, i.e. database tables and

their attributes.
(3) Adopting the data ࣞ accordingly during (2).3
(4) Reconfiguring the interfaces to other applications.

The costs for an ISPr upgrade are (on the vendor side)
the sum of the development costs ܥ஽ and the cost for
testing the system stability and the completeness and
correctness of the upgraded data (costs ்ܥ). A vendor has
these costs for each upgrade for a pair of versions. The
number of possible upgrades rises sharply (O(n2) with n
being the number of versions). For example, there are
eight versions in Figure 1, but 27 possible upgrades (e.g.
1.0 1.0a, 1.0b 1.2a). No vendor wants to develop so
many upgrades. The key is chaining different upgrades
together. The software vendor provides e.g. upgrades
1.0 1.0a and 1.0a 1.1. If the customer wants an
upgrade 1.0 1.1, it means combining the upgrades
1.0 1.0a and 1.0a 1.1, though the customer might not
be aware of such intermediate steps. Thus, the vendor
need not provide a specific upgrade 1.0 1.1. In other
words: the vendor defines predefined upgrade paths for

3 It is technical similar to challenges in data migration
projects [7] in case of complex transformations.

customers, an upgrade chain (Figure 1). The costs raise
linear with the number of versions. Upgrade branches
(version 1.0b and 1.2a) cause more than linear costs. First,
there are the “normal” linear costs for upgrading to the
version (1.0a 1.0b and 1.2 1.2a) plus the costs for
getting back to the chain (1.0b 1.1 and 1.2a 1.3). Our
upgrade costs formula reflects the “linear” costs in part (I)
and the more-than-linear costs in part (II). In the latter
case, ९ contains the (last versions of the) upgrade
branches, in our sample 1.0b and 1.2a.

We get the following upgrades costs formula:
௎௣௚ܥ ൌ ෍ሺܥখ

஽ ൅ খܥ
்ሻ

খאॽᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ூ

൅ ෍ሺܥং
஽ ൅ ংܥ

்ሻ
ংא९ᇣᇧᇧᇧᇤᇧᇧᇧᇥ

ூூ

Our upgrade costs formula illustrates that an “in-
between” ISPr vendor should avoid (unnecessary)
upgrade branches. They emerge due to two reasons. First,
upgrade branches can be a consequence of bug fixes. Two
customers use e.g. version 1.2. They find two different
bugs. The vendor fixes the bugs separately resulting in
upgrade branches (e.g. 1.2a and 1.2x). Upgrade branches
due to bug fixes are avoidable.

Second, the upgrade chain is defined and the upgrades
have been developed, e.g. 1.0a 1.1. Now a bug is
detected in an old version, e.g. 1.0a. If it is not acceptable
for the customer to upgrade to a new version, a bug fix on
the old version results in an upgrade branch (in our
example: 1.0b) An upgrade branch requires an additional
upgrade to be developed (in our example: upgrade
1.0b 1.1). These costs cannot be avoided easily.
6. Discussion
Often, it is part of the business model of “in-between”
ISPr vendors to fulfill all requirements of the different
customers resulting in a version “zoo.” As our cost
functions show for such circumstances, the vendor can
only benefit from the economies-of-scales for software
support and upgrade development, if he keeps the number
of versions in use and the number of upgrade branches as
low as possible.
Acknowledgements: The author would like to thank Tim
Weingärtner for the valuable discussions.
References
[1] S. Ajmani et al.: Modular Software Upgrades for

Distributed Systems, ECOOP '06, Nantes, France
 [2] L.A. Tewksbury, et al.: Live Upgrades of CORBA

Applications Using Object Replication, ICSM'01,
Florence, Italy

[3] W. Linnartz, et al.: Application Management Services
und Support, Publicits/Siemes, Erlangen, 2004

[4] http://www.itil.org
[5] K. Pohl, et al.: Software Product Line Engineering,

Springer-Verlag, Berlin, 2005
[6] http://www.atlassian.com/software/jira/
[7] K. Haller, Towards the Industrialization of Data

Migration, CAiSE'09, Amsterdam, The Netherlands

