
The Magazine for Professional Testers

June 2010

IS
SN

 18
66

-5
70

5
		

w

w
w

.te
st

in
ge

xp
er

ie
nc

e.
co

m
		

fr

ee
 d

ig
ita

l v
er

si
on

		

pr
in

t v
er

si
on

 8
,0

0
€	

pr
in

te
d

in
 G

er
m

an
y

Performance Testing

10

©
 iS

to
ck

ph
ot

o.
co

m
/D

N
Y5

9

We turn 10!

16 The Magazine for Professional Testers www.testingexperience.com

The Test Data Challenge for Database-Driven Applications
by Klaus Haller

© Antonio Oquias - Fotolia.com

It was the summer of 2008. Testing suddenly emerged as the to-
pic in my professional life. I became responsible for the database
back-end of a credit rating application. Banks use such applica-
tions for estimating whether companies pay back their loans.
This impacts whether they get a loan and for which interest rate.
So I was interested in how to test “my” application. But the appli-
cation was different to the ones you read about in testing litera-
ture. The application was built on a database (a database-driven
application, or, short, a DBAP). The DBAP output of an action not
only depends on your input, but also on the history of the DBAP’s
usage. The history manifests in rows and data stored in the tab-
les. And this history influenced the present and future behavior
of “my” application. What sounds like a philosophical question
is of high practical relevance. Four questions sum up what I had
to answer myself: What do I need DBAP test data for? When is a
DBAP “correct”? What is a DBAP test case? And, finally, which test
data is “good”?

Figure 1: Sample Credit Rating Application

These questions are the roadmap for this article. A simplified
credit rating application (Figure 1) will serve as an example. It is
a three-tier application. The database layer stores the data per-
sistency in tables. Table T_CUSTOMERS contains the information
about the customer companies. Table T_FINSTATEMENTS stores

financial statements for the various companies. The middle layer
contains the business logic. It has two procedures. Procedure P_
STORE_FS stores a financial statement in the database. Procedure
P_CALC_RATINGS calculates the rating for all customers. On top,
there is the presentation layer. It provides the GUI input form for
manual input of financial statements. Also, it comprises the pro-
cedure P_VALIDATE_FS. The procedure checks whether the finan-
cial statement inserted into the GUI is “sensible”, e.g. whether the
sum of all assets and liabilities are equal.

DBAP Test Data Cube
Conventional tests know only one kind of data: data used as in-
put parameters for the procedure to be invoked1. It is the idea
of the DBAP test data cube (Figure 2) to visualize why and what
kind of test data testers need. The cube has three dimensions:
test trigger, test stage, and data purpose. The first dimension is
the test trigger. It represents why we test. This issue is discussed
intensively in literature. So we point out only five main reasons.
It can be a completely new application that has never been tested
before. When our credit rating application comes to the market
the first time, the trigger is “new application”. The subsequent
releases trigger tests for reason two: a new release of an existing
application. We test the new functionality and do regression tests
for the existing functionality. Thus, if we add rating functionality,
we need data for testing the new functionality as well as data for
regression testing the existing functionality. A new application
or a new release are two test triggers for software vendors. Cus-
tomers buying software have other reasons for testing: param-
eterization and satellite system interaction. Satellite system inter-
action reflects that most of today’s applications run in complex
application landscapes. Processes span many applications. Vari-
ous applications have to interact. Thus, we test the interaction of
an application with its satellite systems. The fourth test trigger is
parameterization. Standard software such as SAP or Avaloq allows
adapting the software and the workflows according to specific
customers’ needs. One might parameterize e.g. that three per-
sons have to check the rating for loans over ten millions. Whereas
the customer can trust the standard software, the customer has
to test whether its parameterization works as intended. Finally,
the underlying infrastructure can trigger regression tests, e.g.
when operating systems or compilers change.

The second dimension of the DBAP test data cube represents the

1	 „Invoking a procedure“ is a terminology typical for unit tests.
However, it is meant in an inclusive way, i.e. this term also includes
GUI based actions with input and output values inserted or pre-
sented via the GUI.

17The Magazine for Professional Testerswww.testingexperience.com

test stages. Test stages are the different steps in testing address-
ing different needs and can be done by different units of the com-
pany. Typical stages are unit tests, integration tests, and accep-
tance tests. The exact steps and their names often depend on the
process of the company.

The last dimension is the data purpose. It is the role the data
plays in the DBAP. The actual roles might depend on the concrete
architecture. We have identified the following data purporses
as especially important in our applications: Application process-
ing data is data everybody is aware of at first glance. Customers
and their financial statements are examples in the context of our
credit rating application. Application meta data is data which
is more or less stable, but influences the “normal” data process-
ing. An example is tables with credit pricing data. The data de-
termines the risk-adjusted interest rate
based on the credit score of a company.
If the company has a scoring of “me-
dium”, the interest rate might be 9.2%. If
the score is “excellent”, the interest rate
might be 3.7%. Control logic data influ-
ences the execution of processes and
workflows. An example would be the ten
million limit for loans. Loans over ten mil-
lion demand three persons to check the
rating. Output definition data defines the
design and appearance of reports and
customer output. The bank name “NYC
BANK” or a bank logo are examples. Fi-
nally, configuration data deals with the
IT infrastructure the application is de-
ployed to. Examples are the configuration
of interfaces, e.g. to SWIFT.

DBAP Correctness
Testing aims at finding as many bugs as possible as early as pos-
sible in the development life-cycle. The DBAP shall be or shall
become “correct”. But correctness in the context of DBAPs has
various meanings. A data architect, a database administrator, a
software developer, and a tester might focus on completely dif-
ferent aspects. To point this out, we present three possible DBAP
correctness concepts (Figure 2): schema correctness, conformity
correctness, and application correctness.

Schema correctness focuses on the database schema the DBAP
uses for storing its data (green). Schema correctness understands
correctness as having (a) a specification that reflects the real
world and (b) an implementation reflecting the specification and

the real world. Our credit rating application stores financial state-
ments in the database schema. Schema correctness means in this
context: First, there is one table (or more) for storing the financial
statements. Second, the table has attributes for all the informa-
tion provided by financial statements. Third, the financial state-
ments must refer to the companies they belong to.

Figure 3: DBAP Correctness Criteria

Conformity correctness (brown) focuses on constraints or depen-
dencies which are not part of the schema. The dependencies be-
tween balance sheet positions and profit-and-loss accounts are a
good example. They are too complex to be reflected by database
constraints. In our example, there are also no constraints in our
database enforcing that the sum of all assets and all liabilities
are equal. The data (and the DBAP) is only conformity-correct if
it reflects also these non-schema-enforced constraints. Confor-
mity correctness is similar to the concept of assertions in pro-
gramming languages such as Java. Assertions do not improve the
quality by looking at the result of actions, but by ensuring that

the preconditions are as they have to be. Whereas these two cor-
rectness criteria focus only on the database, the third criterion,
application correctness, looks at the complete DBAP behavior as
observed e.g. via the GUI. However, it makes sense not to concen-
trate only on GUI interactions. Also batch processes such as the
rating calculation procedure P_CALC_RATINGS are relevant. Ap-
plication correctness is the most intuitive DBAP correctness crite-
rion. Thus, we rely on it for discussing DBAP test cases.

Test Cases
Literature defines test cases based on three elements: the proce-
dure to be invoked and the input and output parameter values.
This model is suitable for stateless applications such as a calcula-
tor. A calculator returns always “7” after pressing “2”, “+”, and “5.”

Figure 2: DBAP Test Data Usage Cube

Figure 4: Understanding DBAP Test Cases (conventional test case: blue, DBAP extension: red)

18 The Magazine for Professional Testers www.testingexperience.com

We need to adopt the test case concept for DBAPs, because they
are not stateless. Procedure P_CALC_RATINGS needs financial
statements to operate on. Procedure P_STORE_FINSTATEMENT
needs a customer who a new financial statement refers to. So we
need an initial database state. Also, these procedures show that
we cannot rely only on the GUI output for deciding whether a pro-
cedure works correctly. We have to check the database whether a
new financial statement was added to the database (P_STORE_
FINSTATEMENT), or whether the rating calculations are correct
(P_CALC_RATINGS). So a DBAP test case consists of five elements:
input parameter values, an input database state, a procedure to
be invoked, output parameter values, and a resulting database
state.

This model was first presented by Willmor and Em-
bury. We extended it for practical usage for complex
systems by distinguishing two parts of the input
state. ERP systems or core-banking-systems have hun-
dreds or thousands of tables. One table might be rele-
vant for our test case, but we need the other hundreds
or thousands to be filled such that we can perform
our test case. Thus, we divide our input state into two parts, test
case data and consistency data. We illustrate this with procedure
P_CALC_RATINGS. Here, we want to test whether the rating func-
tion works correctly, e.g. whether a bankrupt company gets rating
“0”. So we need test case data in table T_FINSTATEMENTS. This test
data must contain a financial statement of a bankrupt company.
However, we can add such a financial statement if we can link it
to a customer in table T_CUSTOMERS. Thus, the customer would
be consistency data. After execution of the procedure, we might
have to check whether the rating is as expected. Thus, we look at
data in the database. Again, there are two kinds of data. There is
data we are interested in (test case data), e.g. the rating informa-
tion in T_FINSTATEMENTS. We can ignore all other tables in this
particular case, because it is not in the focus of this test case.

Figure 4 compares a conventional test case and a DBAP test case.
Blue reflects what a conventional test case definition contains,
the involved system components, and which actions (input pa-
rameter selection, invocation, checking the outcome) have to be
done. The needed extensions for a DBAP test case are shown in
red. These are the input and output states, the database, load-
ing the database before the test case execution, and, potentially,
checking the resulting state.

Quality
All roads lead to Rome. And in projects many ways lead to DBAP
test data. One can design them by analyzing the specification.
One might use commercial data generation tools. The decision
often depends (besides on costs) on the test data quality. If we
want to compare the quality of different DBAP test data, we need
a notion of quality. In other words: We have to understand what
DBAP test quality means and how it can differ.

Figure 5: Sample Tables with Constraints

Therefore, we rely on the concept of test data compliance levels2.
The compliance levels (Figure 5) are like a stair with four steps.
It requires effort to get to the next step, but you gain quality.
The lowest level is type compliance. Type compliance considers
the data type of the columns. Table T_FINSTATEMENTS has three
columns: one stores the sum of all assets, one the sum of all li-
abilities; an ID column refers to the customer ID in table T_CUS-
TOMER. The reference refers to the company that the financial
statement belongs to. Type compliance demands that we insert
only rows for which all attributes have the right type.

We take a look at the following three INSERT statements for table
T_FINSTATEMENTS (Figure 5):

Statement (1) does not reflect that the attributes must have the
data type NUMBER. It is not type compliant. Statements (2) and (3)
are type-compliant. However, statement (2) does not make sense.
It does not reflect the schema constraints. A NULL value is not al-
lowed for attribute SUM_LI. Also, there is no customer with ID 55
in table T_CUSTOMERS. Next, the check constraints demand that
the values for the sum of all assets and liabilities are positive. The
problem from a testing perspective is that all rows not complying
with a constraint are rejected by the database. So if we prepare 50
type-compliant rows, we do not know whether 50, 45, or 0 rows
make it into the database. However, statement (3) reflects this re-
quirement, as does statement (4). Thus, we use the term schema
compliance for statements (3) and (4). The advantage compared
to only type-compliant data is the guarantee that all rows are
loaded into the database.

We can achieve the two previous compliance levels “type compli-
ance” and “schema compliance” relying only on information of
the database catalogue3. The two highest compliance levels need
more information. From an application point of view, the sum
of all assets and liabilities is always equal. SUM_AS and SUM_LI
must be equal. This is not reflected by the database schema. In
the case of GUI input, procedure P_VALIDATE_FS ensures this.
Otherwise, the procedure rejects the GUI input. So we have de-
pendencies between attributes, which are enforced by the appli-
cation and not reflected by constraints. Such dependencies can
also exist between tables, e.g. one table with financial statements
and a table with profit and loss information. The problem with
dependencies not reflected by schema constraints is that there
might be data that has been inserted in the database which does
not reflect these dependencies. Thus, the DBAP might be in a
state that was not specified. The consequence can be unexpected
behavior of the application. If errors emerge for unspecified cir-
cumstances, they are false positives4. Such circumstances would
never appear under normal usage. So our third level is applica-

2	 K. Haller: White-Box Testing for Database-driven Applications:
A Requirements Analysis, Second International Workshop on Testing
Database Systems, Providence, RI, 29.6.2009

3	 The database catalogue are dedicated tables in a database
which store all information about the content of the database: users,
tables, constrains, views, access rights etc.

4	 False positive means that testers seem to have found a failure.
After an analysis by the testers or software developer the failure turns
out not be a “failure”. Certainly, they are costly. If they appear too
often, one risks that software engineers might stop taking “failures”
seriously. They might assume all failures to be false positives and stop
analyzing potential failures in a sensible way.

T_FINSTATEMENTS T_CUSTOMERS

OWNER_ID SUM_AS SUM_LI ID NAME

NUMBER NUMBER NUMBER NUMBER VARCHAR2(100)

67 120000 12000 55 ALICE CORP.

CONSTRAINTS:

 PRIMARY KEY(OWNER_ID);

 FOREIGN KEY (OWNER_ID)

 REFERENCES T_CUSTOMERS(ID);

 SUM_AS NOT NULL;
 SUM_LI NOT NULL;

 CHECK(SUM_AS>0);
 CHECK(SUM_LI>0);

67 BETTY LTD.

(1) INSERT T_ FINSTATEMENTS(OWNER_ID, SUM_AS, SUM_LI)
 VALUES(‘ALICE CORP.’, ‘ONE MILLON’, ‘NO INFORMATION’);
(2) INSERT T_ FINSTATEMENTS(OWNER_ID, SUM_AS, SUM_LI)
 VALUES (55, -50’000, NULL);
(3) INSERT T_ FINSTATEMENTS(OWNER_ID, SUM_AS, SUM_LI)
 VALUES (32, 23’000, 20’000);

(4) INSERT T_ FINSTATEMENTS(
		 OWNER_ID, SUM_AS, SUM_LI)
 VALUES (32, 20’000, 20’000);

19The Magazine for Professional Testerswww.testingexperience.com

tion compliance. Application compliance means that the DBAP input state
could be the result of “normal” GUI input and data processing. Statement
(4) is a perfect example. Now no false positives can appear. But still, test data
can be better. Let us assume a test case shall test the credit rating functional-
ity for large corporations with assets and liabilities of more than 1’000’000.
We are interested whether procedure P_CALC_RATINGS considers specific
risks of large companies. This test case requires a financial statement with
“higher” values such as statement (5).

The difference between statements (4) and (5) is that the latter allows us
to test the execution path (or test case) we are interested in: the credit rat-
ing for large corporations. If the DBAP test data is suitable for a test case,
it is path-compliant (the term refers to the path coverage criterion). Path
compliance bases always on a test case and a specific execution path of the
application. This is the highest level we can achieve. However, it also makes
clear that different test cases might need different test data sets. Figure 5
compiles the information about all four compliance levels.

Figure 6: Overview Compliance Levels

In this article, we explained the typical problems of testing database-driven
applications. Instead of providing simple answers to complex problems, we
concentrated on explaining the different challenges for projects. Our goal is
to foster discussions within projects to find the best solutions for their par-
ticular problems. Thus, we explained the most important concepts: the test
data cube, correctness, test cases, and quality for DBAPs.

Database Constraints restrict which data can be stored in the tables of a
database. There are the following constraints: Unique constraints state
that this attribute must be different for all rows of a table. ID columns
are a good example. Primary key constraints allow identifying a row.
They can span more than one attribute. Foreign keys refer to primary
keys of a different table. They ensure that there is a fitting value in the
different table, e.g. a financial statement refers always to an existing
(!) customer ID in the customers table. Not null constraints demand
that there is a value provided for this attribute, e.g. that all financial
statement have a sum of assets or a sum of liabilities. Check constraints
allows formulating nearly arbitrary conditions.

(5) INSERT T_ FINSTATEMENTS(OWNER_ID, SUM_AS, SUM_LI)
 VALUES (32, 1’500’000, 1’500’000);

Klaus Haller is a Senior Consultant with
COMIT, a subsidiary of Swisscom IT
Servies. COMIT focuses on projects and
application management services for
the financial industries. Klaus’ interest
is the architecture and management of
information systems. His experiences
span from process engineering, ar-
chitecture and implementation of data
migration solutions for core-banking
systems to the responsibility for the
database backend of a credit rating
application. Klaus studied computer
science at the Technical University of
Kaiserslautern, Germany. He received
his Ph.D. in databases from the Swiss
Federal Institute of Technology (ETH) in
Zurich, Switzerland. He welcomes your
feedback at klaus.haller@comit.ch

Biography

