Tutorial: First Steps in Image Classification
using Python, Jupyter Notebook and
Gluon-CV on AWS SageMaker

Klaus Haller, 13.5.2020

1. AIM OF THE TUTORIAL....cittuiiiieneieiienniiieneieiiensesissssssiesssosissssesisssssstsssssssssssssssnssssssnssssssnssssssnssssssnsssssansnns 3
2. AMAZON SAGEMAKER / AMAZON SAGE MAKER STUDIO.....ccceetttiiirrrrneeeeeereeessssnneeessesssssssssssessessssssnnnsens 3
3. UNDERSTANDING JUYPTER NOTEBOOKcccciiiiemniiiinnnieiiennieiiensieiienssesiensiosssnssesssnssssssnssssssnssssssnssssssnssssss 7
4. IMPLEMENTING IMAGE CLASSIFICATION IN PYTHONcceeuuiiiiiiiiiiineniiiiiiieeneeeiissieeessessssssseeesssssssssneees 8
Photo front page by Icons8 Team on Unsplash

Klaus Haller 2 13.5.2020

1. Aim of the Tutorial

Deep Learning, Analytics, Computer Vision — these are some of today’s hot topics in the IT industry.
These are key technologies for innovation. Universities and big tech companies put high efforts in
research and engineering in these areas. However, even individual developers can enrich their
applications with such artificial intelligence and computer vision technology if they on existing
technologies, tools, and libraries.

This short tutorial explains you one way to achieve this. We use Python and Jupyter Notebook
running on Amazon SageMaker to “implement” image classification based on available, pretrained
neural networks within one to two hours. In other words: You will learn that you do not need any
research, no Ph.D., and not two years and a big team to incorporate such features in your
applications.

The first half of the tutorial is about navigating the AWS web console, whereas the second part
covers the code to get your first images classified.

2. Amazon SageMaker / Amazon Sage Maker Studio

SageMaker is Amazon's solution for machine learning. It comes with one big benefit if you start
learning computer vision with SageMaker: You do not have to do any installations on your local
laptop. When you have your AWS login, it takes you less than five minutes and you can start with
development work. And it is free, at least for the first two months and if you use it moderately, i.e.,
you stay away from expensive AMls or extra options.

To continue, you need an AWS account and you have to be signed in to your AWS

w account. Alternatively, you have to have a local Jupyter Notebook installation on your
computer. In this case, you can continue with section 3 “Understanding Juypter
Notebook”.

When you are signed in to your AWS account and you are in the AWS services page, you type in
“SageMaker” and select and click on the service.

aws. Services ~ Resource Groups ~ *
—

AWS Management Console

AWS services

Find Services

You can enter names, kenrwaords or acromms

,-"?|) SageM o

Amazon SageMaker

¥ Rece I’Itl!.I visited services Amazon Sagebaker

(&) Billing &3 Amazon SageMaker "ci; Amazon Rekognition

Klaus Haller 3 13.5.2020

Then, you click on “Amazon SageMaker Studio”, which is Amazon’s development environment.

aﬂs Services ~ Resource Groups ~

Amazon SageMaker X

Amazon SageMaker Studio

Dashboard

Search

Ground Truth
Labeling jobs
Labeling datasets

Labeling workforces

Notebook
Notebook instances
Lifecycle configurations

Git repositories

*

CHINE LI

Amazon SageMaker
Build, train, and deploy

Get started

Explore Amazon SageMaker Studio, a
machine leamning Integrated

machine learning models [

at scale

building, training, and debugging

maodels, tracking experiments,
deploying models, and monitoring their
performance. This is available in the
The quickest and easiest way to get ML models from idea to production. following AWS Regions: US East (Ohia),
US East (N. Virginia), US West (Oregon),
and Europe (Ireland).

Amazon SageMaker Studio

Next, you create a new user for SageMaker Studio. Therefore, click on “Add user”.

Services Resource Groups

Amazon SageMaker X Amazon SageMaker

Amazon SageMaker Studio

Amazon SageMaker Studio Control Panel

Dashboard

Search

v Ground Truth
Labeling jobs User name
Labeling datasets

Labeling workforces

Choose your user name, then choose Open Studio to get started

Last modified v Created

May 11, 2020 09:19 UTC May 11, 2020 09:18 UTC

Select “Quick start, add a user name, and select “Create new role”.

Amazon SageMaker Amazon SageMaker Studio

Amazon SageMaker Studio

What is Amazon SageMaker Studio?

a

Spin up Jupyter Notebooks in seconds to build models and
collaborate with one-click sharing. Use Amazon SageMaker

Autopilot to automatically generate models from your data.

Learn more [4

Get started

© Quick start

User name

tutorialuser ‘

Execution role

Amazon SageMaker Studio re

uires
AmazonSageMakerFullAccess policy

Create anew role <l

‘% Train

Run distributed training, and troubleshoot models with
Amazon SageMaker Debugger. Use Amazon SageMaker
Experiments to organize, track, and compare experiments,

Learn more [

Open Studio [2

% Deploy

Deploy your models with auto scaling, and automatically
monitor for drift in production using Amazon SageMaker
Model Monitor.

Learn more [4

A mask shows up for creating an IAM role. If you are in a test environment, just accept by clicking on

“Create Role”.

Klaus Haller

13.5.2020

Now you can create the SageMakerStudio environment by clicking on “Submit”.

© Quick start
Let Amazon SageMaker handle configuring account and setting the permissions that you or a team in your organization need to use Amazen SageMaker Studio. Choosing
this options uses standard encryption, which you can't change. If you need more control over configuration, choose Standard setup
User name
tutorialuser
The user name can have up to 63 characters. Valid characters: A-Z, a-z, 0-9, and - (hyphen)

Execution role
Amazon SageMaker Studio requires permissions to access other
AmazonSageMakerFull Access policy attached. If you don't

execution role must have the

™ cutionRole- "7 ST 0T v

©success! You created an 1AM role. X
K S molegy e e a2

Standard setup
Control all aspects of account configuration, including permissions and encryption. Choose this option if you are an administrator setting up Amazon SageMaker Studio for
your organization.

A couple of times, | had issues with the submit button. | could click it, but there was
no reaction. In such a case, you are most probably a person with some experience
using AWS. You might want to choose the “standard setup” option and choose an
existing VPC or subnet.

A little bit later (it might take a while), you see the following page and you can select “Open Studio”.

*

Services ~ Resource Groups ~

Amazon SageMaker Studio is ready

Amazon SageMaker X
Choose your user name, then choose Open Studio to get started

Amazon SageMaker Studio

‘Amazon SageMaker Amazon SageMaker Studio Control Panel

Dashboard
Sewrch Amazon SageMaker Studio Control Panel
w Ground Truth . R
Choose your user name, then choose Open Studio to get started Add user
Labeling jobs
Labeling datasets Q search users 1 @
Labeling workforces.
User name v Last modified v Created v
¥ Notebook
Notebook instances o May 13, 2020 15:13 UTC May 13, 2020 1513 UTC » Open Studio [4
Lifecycle configurations
Git repasitories ¥ Studio Summary How to delete Studia
w Training
Algorithms Status Studio 1D Execution role Authentication method
@ Ready d-bObdhstbwwmd armavesiam::? T role/service- AWS Identity and Access Management (IAM)

Training jobs
role/AmazonSageMaker-ExecutionRale-

Hyperparameter tuning jobs

w Infarancs

Klaus Haller 5 13.5.2020

Now, click the “Create a notebook” button.

& Amazon SageMaker Studio

B z &3 Launcher X zon SageMaker Studio X

| Nome
(=]

Welcome to Amazon SageMaker Studio

a 7 ; Deploy and # Build models
Build and train monitor automatically

You get to the following screen:

¥ Untitled.ipynb
*/

EXPERIMENTS

Congratulations. You are now ready to go! The next section will give you a brief introduction in
Juypter Notebook and how to use it as a development environment.

Klaus Haller 6 13.5.2020

3. Understanding Juypter Notebook

Jupyter Notebook is a development environment used by many data scientists. Compared to your

typical Java Eclipse IDE, there are important differences:

- You work interactively like you might know it from interpreted languages. You write some
lines of code to download data, query your data, or to train a machine learning model —and

you see the result immediately.

- Jupyter Notebook is like a paper notebook when it comes to documenting. You write down
the code and add comments to it immediately. In contrast to commenting your code in Java,

you can make it look nicer, it feels more natural, and it really helps that you work

interactively. You write what you want to achieve as a comment, then you write the code.

Then you continue with the next comment, followed by code again.

Figure 1 provides an example, a screenshot showing part of the code of this tutorial. The screenshot
shows the second step where we download the images from the web and store them in an array for
later processing. On the top, we see a cell with comments or text. This is called “markdown”. It is
followed by a cell with actual code. We define variables, then download the images in a for-loop,
and write to the console that we are finished. Down there, we see the output that was written to the

console when we executed the code cell.

import gluoncv as gcv
import matplotlib.pyplot as plt

Step 2: Download some images from the web and store them in an array.

imagel url = http://www.klaushaller nt/uploads/2020/05/klaushaller_demop e_01.jpg
image2_url = ‘http: klaushaller.net/ tent/uploads/2017/11/20130510_200219-1c.

image3_url = ‘http: aushaller.net/ ntent/uploads/2020/05/klaushaller_demopicture_00-1.jpg"
image4_url = “http://www.klaushaller.net/ ntent/uploads/2020/05/klaushaller_demopicture_03.jpg’
imageS_url = ‘http: .klaushaller.net/wp-content/uploads/2020/05/klaushaller_demopicture 04.jpg’

images_url= [imagel_url, image2_url, image3_url, image4_url, image5_url]
images=[]

for i in range(len(images_url)):
gev.utils.download(url=images_url[i], path='imagedownloadd'+str(i))
images . append(mx. image. imread (' imagedownload®' +str(1)))
print(’Image download completed.')

Downloading imagedownl0ad@® from http://ww.klaushaller.net/wp-content/uploads/2020/05/klaushaller_demopicture_01.jpg. ..

2774K8 [00:00, 3389.65KB/s]
Downloading imagedownload@l from http://wai.klaushaller.net/wp-content/uploads/2017/11/20130510_200219-1c.jpg. . .

:00<00:00, i s
100%|; | 2166/2166 [00:00<00:00, 3176.48KB/

Downloading imagedownload@2 from http://ww.klaushaller.net/wp-content/uploads/2020/05/klaushaller_demopicture_80-1.3pg. ..

168KB [00:00, 600.11KB/s]

Downloading imagedownload®3 from http://www.klaushaller.net/wp-content/uploads/2020/05/klaushaller_demopicture_03.jpg...

100% | | 223/423 (00:00<00:00, 758.27KB/s]

Downloading imagedownload®4 from http://www.klaushaller.net/wp-content/uploads/2020/05/klaushaller_demopicture_04.jpg...

49KB [00:00, 255.08KB/s]
Image download completed.

}

Step 3: Verify whether everything works. Execute the following command and you will see a picture of London's fair with the river Themse/

plt. imshow(images[@].asnumpy())

<matplotlib.image.AxesImage at Ox7£348427b4d0>

Klaus Haller 7

Markdown: comments
describing e.g. what the
following code does

Actual code (here: in Python) to

be executed

Output of the code with a
mixture of output coming from
the invoked routines and output
defined in the code directly (last

line)

13.5.2020

4. Implementing Image Classification in Python

It is straight forward to implement an image classification using Python. We do not need our own
training data and we do not have to train a neural network. We just use existing models available for
download from the web. You can either copy & paste the input for the cells from the tutorial or type
the code in by yourself.

Input the following to the cell on the Juypter Notebook.

* K

** This script demonstrates image classification using Python 3 and Gluon-CV.
** (c) Klaus Haller, 13.5.2020

* %

Then, change the cell type from “Code” to “Raw” ...

... and press Shit+Return.

We are ready for the the first step. We begin with a comment:

Step 1: Load the libraries

Change the cell type to “Markdown” and press Shift+Return.

We have to download and install some libraries:

pip install mxnet gluoncv matplotlib

Once you press Shift+Return, you see an output similar to the following (it might look different if you
run it the first time):

Requirement already satisfied: mxnet in /opt/conda/lib/python3.7/site-packages
(1.6.0)

Requirement already satisfied: gluoncv in /opt/conda/lib/python3.7/site-packages
(0.7.0)

Requirement already satisfied: matplotlib in /opt/conda/lib/python3.7/site-packages
(3.1.3)

Requirement already satisfied: numpy<2.0.0,>1.16.0 in
/opt/conda/lib/python3.7/site-packages (from mxnet) (1.18.1)

[...]

Requirement already satisfied: setuptools in /opt/conda/lib/python3.7/site-packages
(from kiwisolver>=1.0.1->matplotlib) (45.2.0.p0ost20200210)

Note: you may need to restart the kernel to use updated packages.

Now, we import the libraries to our notebook:

import mxnet as mx
import gluoncv as gcv
import matplotlib.pyplot as plt

As for all other code cells, we have to press Shift+Return to execute the commands (in the following,
| will not mention this again).

Klaus Haller 8 13.5.2020

Aim of the next step, the second step, is to download the pictures we are using and loading them to
an array. We write the following short text in a markdown cell:

| Step 2: Download some images from the web and store them in an array.

We continue with the actual code we want to execute:

imagel url = 'http://www.klaushaller.net/wp-
content/uploads/2020/05/klaushaller demopicture 01.jpg'’
image2 url = 'http://www.klaushaller.net/wp-
content/uploads/2017/11/20130510 200219-1c.jpg’

image3 url = 'http://www.klaushaller.net/wp-
content/uploads/2020/05/klaushaller demopicture 00-1.jpg’
imaged4 url = 'http://www.klaushaller.net/wp-
content/uploads/2020/05/klaushaller demopicture 03.jpg’
image5 url = 'http://www.klaushaller.net/wp-

contenE/uploads/Z020/O5/klaushaller_demopicture_04.jpg'
images_url= [imagel url, image2 url, image3 url, image4 url, imageb url]
images=[]
for i in range(len(images url)):
gcv.utils.download (url=images url[i], path='imagedownloadO'+str(i))

images.append (mx.image.imread ('imagedownloadO'+str(i)))
print ('Image download completed.')

You can verify whether everything worked perfect by submitting the following command:

| plt.imshow (images[0] .asnumpy ())

You should see a yellow boat on the sea with a small beach and forest in the background.

<matplotlib.image.AxesImage at Ox7/f73f04e95b50>

500

1000

1500

2000

2500
0 500 1000 1500 2000 2500 3000 3500

Klaus Haller 9 13.5.2020

Step 3 is about preparing the images so that they can be classified (dealing with different sizes,
brightness etc.). We start again with a markdown cell documenting what we do:

Step 3: Prepare the images for object identification

The actual code follows here:

images prepared=[]
for i in range(len(images)) :
images prepared.append(gcv.data.transforms.presets.imagenet.transform eval (images

[i]))

In the following 4" step, we install a pretrained neural network. This means, it is a neural for which
all training is completed. It is ready to classify our sample pictures.

Step 4: Initialize pretrained neural and classify images

pretrainedNN = gcv.model zoo.get model ('densenet201', pretrained=True)
top3classes=[]
for i in range(len(images prepared)) :
top3classes.append (mx.nd.topk (mx.nd.softmax (pretrainedNN (images prepared[i])),
k=3) [0])

The following code shows the images and the three most likely classifications for the image. To
prevent misunderstandings: The neural network classifies (hopefully) the most dominant object on
the image, though looking at the second or third most likely class can be an indication what else is
on the picture.

print ('Picture 1"')

plt.imshow (images[0] .asnumpy ())

for i in range(3):
index=top3classes[0] [i].astype('int') .asscalar ()
label=pretrainedNN.classes[index]
print ("#',i+1, 'Detected object: ', label)

Picture 1

1 Detected object: catamaran
2 Detected object: 1liner

3 Detected object: dock

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

Obviously, the first classification is perfect.

Klaus Haller 10 13.5.2020

Now we have a look at the second image and how it is classified by the neural network:

print ('Picture 2"')

plt.imshow (images[1l].asnumpy ())

for i in range(3):
index=top3classes[l] [i].astype('int') .asscalar ()
label=pretrainedNN.classes[index]
print ("#',i+1, 'Detected object: ', label)

Picture 2

1 Detected object: cash machine

2 Detected object: vending machine
3 Detected object: switch

0
200
400
600
800

1000
1200
1400
1600

0 500 1000 1500 2000

print ('Picture 3')

plt.imshow (images[2] .asnumpy ())

for i in range(3):
index=top3classes[2][i] .astype('int') .asscalar ()
label=pretrainedNN.classes[index]
print ("#',i+1, 'Detected object: ', label)

Picture 3

1 Detected object: alp

2 Detected object: valley
3 Detected object: lakeside

0

100

200

300

400

500

0 100 200 300 400 500 600

This picture does not have one dominant object, but various ones — the Matterhorn mountain in the
Alpes, some trees in the middle, and a lake in the foreground. Again, the suggested classes — at least

alp and lakeside — make sense.

Klaus Haller 11

13.5.2020

Now the fourth picture.

print ('Picture 4"')

plt.imshow (images[3].asnumpy ())

for i in range(3):
index=top3classes[3][i].astype('int') .asscalar ()
label=pretrainedNN.classes[index]
print ("#',i+1, 'Detected object: ', label)

Picture 4

1 Detected object: wine bottle
2 Detected object: beer bottle
3 Detected object: vase

200

400

600

800

1000

0 200 400 600

This picture contains a bottle of sparkling wine and a champagne flute as larger objects, plus a table,
a plastic chair, and a tree in the background. Again, the algorithm works well with suggesting a wine
bottle. The alternative, beer bottle, is also not bad.

The neural network has the goal to classify the image, aka the main object, correctly. It does not aim
to identify the second or third most important or biggest object on the image. Also, the exact objects
— sparkling wine bottle and champagne flute — were not trained. Thus, the neural network cannot
identify them as such.

Klaus Haller 12 13.5.2020

The last picture is one with me.

print ('Picture 5'")

plt.imshow (images[4] .asnumpy ())

for i in range(3):
index=top3classes[4][i].astype('int') .asscalar ()
label=pretrainedNN.classes[index]
print ("#',i+1, 'Detected object: ', label)

Picture 5

1 Detected object: Windsor tie
2 Detected object: television
3 Detected object: monitor

0

50
100
150
200
250

300

0 100 200 300 400 500 600

Obviously, this pretrained neural network does not identify a human plus some illustration in the
background well. However, that is nothing the neural network was trained for —and this is to make
you aware that pretrained neural networks have also their limitations and cannot solve everything.

To conclude: It takes an hour or two to classify pictures using pretrained neural network. This has
implications for projects in companies. It makes no sense to start a project with checking for existing
pretrained neural networks before embarking in time-intense software engineering and neural
network endeavors. The pretrained models do not beat a human, but in many cases, they might be
enough to start your journey of using images to generate new knowledge and new insights for your
company.

Klaus Haller 13 13.5.2020

