Category Archives: AWS

Application-Consistent Backups for VM Workloads in the Cloud

Application backups are not as simple as in the world of database lectures. Have you ever heard about the ACID properties with “A” representing “atomicity” and “D” durability? After a database commit, everything is on disk. Nothing can get lost. Plus, all commands within the transaction are on disk – or everything is undone. When a database crashes and restarts, its data reflects precisely the effects of all committed transactions. It works as designed if an application relies on exactly one database. Sadly, applications are more complex, as Figure 1 illustrates. They tend to access not only one database but several in parallel, plus write data to files and file shares – and disks attached to VMs.

Figure 1: Real-live Backup Scenarios for Applications and their VMs

Understanding Application-Consistent Backups and their Benefits

While private users can save their data by manually copying all their files to a different hard disk or the cloud, this approach is too simplistic for larger applications, even if we focus only on VM disks. If it is a large disk, files with names starting with “A” might get copied at 5:00 am and those starting with “Z” at 5:05 am. Thus, the “Z-files” could have been changed between 5:00 am and 5:05 am, making the A-files and the Z-files inconsistent. Furthermore, copying open files causes issues, changes might be only in the memory and not written to disk, or there could be pending I/O transactions. Thus, a clean-up of files and their data might be necessary when restarting the application using such file copies. The clean-up can be automated or a manual task for engineers. In any case, it prolongs application outages.

Application consistency overcomes this challenge. The idea is to perform backups such that applications run after restarting a VM without any clean-up actions. Thus, business-critical applications benefit from lower downtimes, i.e., they can provide better Recovery Time Objectives. Plus, the organization benefits in crisis events, aka business continuity management situations. When a company has to evacuate all workloads to a different cloud data center, the engineers can rely on the VMs to restart and applications to come up without manual intervention. The engineers can focus on fixing more complex issues, e.g., related to integrations with other components, rather than the complete IT department being stuck with cleaning up file systems.

The most prominent solution for application-consistent backups is Microsoft’s Windows Volume Shadow Copy Service (VSS). Microsoft products come with it, and your organization’s applications (and your third-party software provider) can also implement it for Windows workloads. The exact details of VSS are, however, not so relevant from a cloud security architecture perspective. What matters is the available features for application-consistent backups in AWS, GCP, and Azure.

Application-Consistent Backups in the Cloud

Azure comes with a solution for application-consistent backups for Linux VMs, at least for those deployed with the Azure Resource Manager and not the Service Manager. It is a framework enabling application developers or operations specialists to integrate pre- and post-scripts into Azure’s backup process. Pre-scripts can invoke, for example,  APIs of the application to tell the application to finish off all “write” activities. Then, Azure performs the backup copy. Afterward, Azure invokes the post-script, and normal operations continue. For this purpose, a configuration file (Figure 2) must be on all relevant VMs.

Figure 2: Configuration File for Application Consistent Backups of Linux VMs in Azure. Highlighted are the configuration of pre- and post-backup scripts. Other settings are for defining parameters and handling exceptions and failures.

The pre- and post-scripts and this configuration file are critical from a security perspective. They run with root privileges. Thus, they must be secured to prevent attackers having gained access to the VM to change these settings and execute malicious code as root.

The situation for Windows VMs on Azure is much easier compared to the Linux world. By default, all VM backups use the Microsoft VSS service. So, if (and only if!) the applications on the VM implement VSS, all backups are application-consistent without the need for extra VM configurations. If not, the disk backup is not application- but only file-consistent.

Finally, a quick remark on the AWS and the Google Cloud Platform (GCP) features. Both follow the same approach as Azure: pre- and post-scripts for Linux VMs, and Microsoft’s VSS for Windows VMs.

Back to the Big Picture

To conclude: Application-consistent backups reduce downtimes of applications by reducing the work for engineers after crashes or VM evacuations. However, the term application consistency can be misleading. When looking again at Figure 1, it is clear that the consistency between the VM disks and the database backups is not guaranteed. Applications have to cover the challenge that the VM disk backup is from 4:07 am, one database backup is from 4:05, and the second from 4:17. So, even with application-consistent backups, there are still exciting tasks and challenges for engineers in the area of backup and recovery!

The Hub and Spoke Network Pattern

Ever wondered how large corporations design their networks in the cloud? The hub-and-spoke pattern is probably the most important to understand their on-prem and cloud network designs, no matter whether an IT department runs on GCP, AWS, Azure, or any other cloud provider.

Mesh is the “free love” vision transferred to enterprise network designs, whereas the hub-and-spoke pattern implements more of a harem concept. But to start with the big picture: The focus is not on individual applications. Network design looks at how to organize connectivity and isolation for networks with hundreds or even thousands of applications. These applications serve business needs, such as SAP or self-developed insurance solutions. The design must consider as well technical or security-related applications such as Web Application Firewalls, IAM services, Messaging Middleware, or Data Loss Prevention solutions.

Hub-and-Spoke vs Mesh Network

The first aspect is zoning. IT department group their resources. VMs belonging to an HR application might be separated from air traffic control systems. They are in two separate zones. Network design patterns define how such zones interact, i.e., which zones have connectivity and can interact directly with which other. When looking at concepts, two patterns are particularly important: the mesh network pattern and the hub-and-spoke pattern (Figure 1).

Figure 1: Hub-and-Spoke versus Mesh

A hub-and-spoke network is hierarchical. One zone is the hub. It connects with every other zone – the spokes. It is a classic 1-to-n relationship known from harems. Resources in two separate spokes zones always interact via the hub. A mesh network builds on the free-love-idea: every zone can interact with every other zone (and zones might forward traffic to other zones in the absence of direct connectivity).

Why Hub-and-Spoke Patterns are Popular

Mesh networks (and free love) cause a mess if relationships and connectivity are not tightly managed. In contrast, the hierarchical model of hub-and-spoke networks allows for centralized governance and operations of components and eases controlling the network traffic flow.

Routing all traffic to and from the internet through one hub zone eases control and security. In this zone, DDoS protection, the (network-) data-loss-prevention solution, and other critical internet-connectivity-related applications must run. Then, perimeter security is in place for the complete data center.

One dedicated zone with internet connectivity also eases setting up web application firewalls (WAFs), which usually require integration with an IAM solution. Having both in dedicated central zones is much easier than having WAFs in ten zones and IAM solutions in seven.

Centralizing components in a hub is useful beyond internet connectivity: (Azure or on-prem) Active Directories, messaging middleware, application performance monitoring, and many more benefit from centralization. This insight does not mean building one monolithic hub with all centralized applications. Enterprise-scale networks can have several hubs, e.g., one serving as a management zone with monitoring and another for internet connectivity (Figure 2).

Figure 2: Overlapping Hub Networks Example with an Internet-facing External Zone and an internal Management Zone e.g., for Monitoring

Grouping Criteria for Zoning

Zones are groups of (cloud) resources, e.g., VMs, isolated from other resources and VMs in other zones. The grouping criteria differ between organizations, companies, and departments. Typical grouping criteria are (Figure 2):

  • Applications or groups of applications forming one solution
  • Stages such as Production, Preproduction, Integration, Test, and Development.
  • Teams or departments managing the resources and potentially following different change management processes
  • Sensitivity of the data of applications
Figure 3: Typical Criteria for Zoning

Cloud Features for Implementing Zones

Cloud providers do not offer a “zone” or a “hub-and-spoke network” feature. They provide sophisticated building blocks for structuring workloads and networks. Tenants, Virtual Private Clouds (VPCs), and Subnets are features for organizing networks and resources hierarchically. AWS, Azure, GCP, and all the others provide routing tables for – well – routing. Access Control Lists and Network Security Groups (the exact names differ between the clouds) enable engineers to implement firewalls for blocking or allowing specific network traffic. The clouds come with Internet Gateways, NATs, etc. Everything is ready for you to implement effective and secure network designs. However, whether you do that and how many free-love-like connections you allow is up to you and all other network architects of the world.

AWS Network Zoning and Security for IaaS Workloads

A couple of months ago, I posted an article about IaaS and network perimeter protection for GCP and Azure. Today, I look at the related concepts in Amazon Web Services (AWS).

Structuring Networks in AWS

The concept of the Amazon Virtual Privat Cloud (VPC) and Subnets are the AWS terms for structuring the network. A VPC consists of a continuous IP address range represented by a CIDR block, e.g., 10.0.16.0/24. A network design with overlapping IP ranges for different VPCs is technically possible though it can result in issues when connecting, aka peering, such VPCs later.

The network design divides the IP range of a VPC further into Subnets. Subnets are the canvases into which engineers deploy VMs – EC2 instances in AWS speak, short for Elastic Compute Cloud (Figure 1). Subnets belonging to the same VPC must not have overlapping IP ranges, but they do not have to consume the complete range. Non-used IP ranges ease responding to changing business needs and IT landscapes. So, everything is similar to what we know from GCP and Azure. The way subnets are protected, however, differs slightly.

Figure 1: Network diagram with VPCs and Subnets and corresponding screens in the AWS GUI

Controlling Network Traffic with Network ACLs

One AWS concept for securing the subnet perimeter is the Network Access Control Lists (Network ACLs) feature. Network ACLs allow or deny ingress and egress traffic. They act as a stateless firewall that checks traffic against a simple ruleset. Inbound rules (Figure 2, A) allow or deny traffic from specified IP addresses outside the subnet. Outbound rules (Figure 2, B) inspect traffic leaving the subnet. In addition to the source or target IP, rules can consider the port number (e.g., 23, 8080) and the protocol type. If there are conflicting rules, the priority of the rules is the deciding factor.

Figure 2: Sample Network ACL

When designing a concrete network, architects should be aware of default behavior and setups – and how Network ACLs, VPCs, and subnets relate. First, each VPC has a default Network ACL. It allows all ingress and egress traffic to and from the subnets within the VPC. However, the VPC (by default) has no connectivity with the internet, external networks, or other AWS VPC, be it in the same or another AWS account  (we discuss this in the following section). Engineers can either change the default Network ACL or create a new one and associate it with one or more subnets of the same VPC.

A simplistic example is a VPC hosting several web applications. Each application might have a frontend and a backend subnet. Frontend subnets have open HTTP and HTTPS ports plus an open JDBC port to connect to the database backend subnets, which allow only JDBC traffic. Figure 3 illustrates such a scenario. VPC A has a Network ACL “Frontends” associated with Subnets SN1 and SN2. There is a differenet second Network ACL “DB Backend” associated with Subnet SN3. VPC A has a default Network ACL, but it is not in use. In contrast, the default Network ACL for VPC B is associated with the only subnet there, SN7.

Figure 3: Understanding Network Access Control Lists NACLs) for AWS IaaS Workloads

Security Groups

In addition to Network ACLs, AWS provides a more sophisticated second feature for controlling network traffic: Security Groups. While Network ACLs impact the subnet perimeter, Security Groups focus on the traffic going through the network interfaces of individual VMs (or EC2 instances), for which AWS uses the term Elastic Network Interface (ENI). Applicable Security Groups can be configured per ENI. Each ENI must have at least one but can also have multiple Security Groups associated.

The rules for Security Groups specify the protocol as well as the source, respectively target IP addresses on the target with the following main differences:

  • Security Groups control traffic going through the ENI. Thus, they can also restrict traffic within a subnet, and different VMs within the same network can have different applicable Security Groups.
  • Security Groups act as stateful firewalls. Only the initiating in- or outbound traffic has to be allowed. Reply traffic is allowed automatically.
  • There are only “allow” rules, no “deny” rules. Adding an additional Security Group to a VM might result in more ports, protocols, and target or source IPs (or Security Groups) being allowed. Adding rules to Security Groups never restricts or forbids traffic.
  • By default, all outgoing traffic is allowed, and all incoming traffic is denied.

An important aspect from the security perspective is that EC2 instances can have secondary ENIs with a second IPv4 address which puts EC2 instances logically into two subnets. There are even more options in a world with IPv6.

Figure 4 illustrates a network design with two subnets in one VPC with one default Security Group and a newly created second security group named SG-1. Both apply to the ENI2 network interface, whereas all other VMs only have one security group. The example also illustrates two network interfaces being attached to the same EC2 instance, which, as a result, becomes part of subnet SN1 and SN2.

Figure 4: Security Groups as Means of Protecting IaaS Workloads in AWS

Connecting VPCs with the Outside

A VPC without connectivity to other VPCs or the internet is securely protected against outside attacks – and completely useless. Suppose users, admins, customers, or other programs cannot start any processing because no one can reach the EC2 instances, and they cannot access outcomes and results. In that case, there is no need to have a VPC At least some EC2 instances, respectively, subnets and VPCs they belong to must interact with external servers and services. It creates an attack surface, but that is unavoidable and taggling the risks is part of the network security design.

VPC Peering is the essential concept enabling communication between VPCs belonging to the same AWS account or other AWS accounts within the same AWS organization. Components and VMs in peered VPCs interact as if they belong to the same VPC. All traffic stays internal. No traffic goes via the internet, keeping the attack surface low regarding outside attacks.

Shared VPCs are a similar concept. AWS accounts can share a VPC with other AWS accounts within the same AWS organization. Then, the other AWS accounts can create and manage components within this shared VPC. However, while everyone uses the same Shared VPC, resources of the different AWS accounts are managed and seen only by the AWS accounts to which they belong. AWS markets Shared VPCs as a feature to reduce the number of VPCs while still ensuring high interconnectivity, separate billing, and isolation or access control.

VPC Peering and Shared VPCs are powerful concepts but are limited to the IT landscape of one single company. However, Internet Gateways and NAT Gateways are key AWS features when companies interact with others. In this context, Architects have to understand: Do they need only traffic from within a subnet or VPC to the internet, or should EC2 instances be directly reachable from the internet? The latter, obviously, poses a higher attack surface and security risk since attackers can directly reach out to VMs.

Exposure to the internet requires EC2 instances to have a Public IP and the subnet/VPC to have an Internet Gateway component with a suitable routing table. Such a design allows ingress and egress traffic from and to the internet.

If EC2 instances only need to initiate egress traffic, a NAT Gateway is the solution. It takes invocations from EC2 instances within a subnet, routes them to external IPs, and sends replies back to the initiating EC2 instance. On the way, the NAT replaces the internal caller IP with its external IP and vice versa for replies.

AWS comes with various additional and less-frequently used concepts. Three features or services center around interactions between an on-premise and cloud infrastructure:  AWS Virtual Private Network, AWS Direct Connect (dedicated, private connections), and AWS Transit Gateways (managing hybrid networks).

Finally, there is a connectivity or network feature named AWS Private Link. It is less relevant for the IaaS world of EC2 but crucial for application landscapes incorporating AWS PaaS and DBaaS services. I will cover the concept in one of my next posts.